Metamath Proof Explorer


Theorem rnopabss

Description: Upper bound for the range of a restricted class of ordered pairs. (Contributed by Eric Schmidt, 16-Sep-2025)

Ref Expression
Assertion rnopabss ran { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑦𝐴𝜑 ) } ⊆ 𝐴

Proof

Step Hyp Ref Expression
1 rnopab ran { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑦𝐴𝜑 ) } = { 𝑦 ∣ ∃ 𝑥 ( 𝑦𝐴𝜑 ) }
2 19.42v ( ∃ 𝑥 ( 𝑦𝐴𝜑 ) ↔ ( 𝑦𝐴 ∧ ∃ 𝑥 𝜑 ) )
3 2 abbii { 𝑦 ∣ ∃ 𝑥 ( 𝑦𝐴𝜑 ) } = { 𝑦 ∣ ( 𝑦𝐴 ∧ ∃ 𝑥 𝜑 ) }
4 ssab2 { 𝑦 ∣ ( 𝑦𝐴 ∧ ∃ 𝑥 𝜑 ) } ⊆ 𝐴
5 3 4 eqsstri { 𝑦 ∣ ∃ 𝑥 ( 𝑦𝐴𝜑 ) } ⊆ 𝐴
6 1 5 eqsstri ran { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑦𝐴𝜑 ) } ⊆ 𝐴