Metamath Proof Explorer


Theorem rnopab3

Description: The range of a restricted class of ordered pairs. (Contributed by Eric Schmidt, 16-Sep-2025)

Ref Expression
Assertion rnopab3 ( ∀ 𝑦𝐴𝑥 𝜑 ↔ ran { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑦𝐴𝜑 ) } = 𝐴 )

Proof

Step Hyp Ref Expression
1 df-ral ( ∀ 𝑦𝐴𝑥 𝜑 ↔ ∀ 𝑦 ( 𝑦𝐴 → ∃ 𝑥 𝜑 ) )
2 pm4.71 ( ( 𝑦𝐴 → ∃ 𝑥 𝜑 ) ↔ ( 𝑦𝐴 ↔ ( 𝑦𝐴 ∧ ∃ 𝑥 𝜑 ) ) )
3 2 albii ( ∀ 𝑦 ( 𝑦𝐴 → ∃ 𝑥 𝜑 ) ↔ ∀ 𝑦 ( 𝑦𝐴 ↔ ( 𝑦𝐴 ∧ ∃ 𝑥 𝜑 ) ) )
4 rnopab ran { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑦𝐴𝜑 ) } = { 𝑦 ∣ ∃ 𝑥 ( 𝑦𝐴𝜑 ) }
5 19.42v ( ∃ 𝑥 ( 𝑦𝐴𝜑 ) ↔ ( 𝑦𝐴 ∧ ∃ 𝑥 𝜑 ) )
6 5 abbii { 𝑦 ∣ ∃ 𝑥 ( 𝑦𝐴𝜑 ) } = { 𝑦 ∣ ( 𝑦𝐴 ∧ ∃ 𝑥 𝜑 ) }
7 4 6 eqtri ran { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑦𝐴𝜑 ) } = { 𝑦 ∣ ( 𝑦𝐴 ∧ ∃ 𝑥 𝜑 ) }
8 7 eqeq1i ( ran { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑦𝐴𝜑 ) } = 𝐴 ↔ { 𝑦 ∣ ( 𝑦𝐴 ∧ ∃ 𝑥 𝜑 ) } = 𝐴 )
9 eqcom ( 𝐴 = { 𝑦 ∣ ( 𝑦𝐴 ∧ ∃ 𝑥 𝜑 ) } ↔ { 𝑦 ∣ ( 𝑦𝐴 ∧ ∃ 𝑥 𝜑 ) } = 𝐴 )
10 eqabb ( 𝐴 = { 𝑦 ∣ ( 𝑦𝐴 ∧ ∃ 𝑥 𝜑 ) } ↔ ∀ 𝑦 ( 𝑦𝐴 ↔ ( 𝑦𝐴 ∧ ∃ 𝑥 𝜑 ) ) )
11 8 9 10 3bitr2ri ( ∀ 𝑦 ( 𝑦𝐴 ↔ ( 𝑦𝐴 ∧ ∃ 𝑥 𝜑 ) ) ↔ ran { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑦𝐴𝜑 ) } = 𝐴 )
12 1 3 11 3bitri ( ∀ 𝑦𝐴𝑥 𝜑 ↔ ran { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑦𝐴𝜑 ) } = 𝐴 )