| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							df-ral | 
							⊢ ( ∀ 𝑦  ∈  𝐴 ∃ 𝑥 𝜑  ↔  ∀ 𝑦 ( 𝑦  ∈  𝐴  →  ∃ 𝑥 𝜑 ) )  | 
						
						
							| 2 | 
							
								
							 | 
							pm4.71 | 
							⊢ ( ( 𝑦  ∈  𝐴  →  ∃ 𝑥 𝜑 )  ↔  ( 𝑦  ∈  𝐴  ↔  ( 𝑦  ∈  𝐴  ∧  ∃ 𝑥 𝜑 ) ) )  | 
						
						
							| 3 | 
							
								2
							 | 
							albii | 
							⊢ ( ∀ 𝑦 ( 𝑦  ∈  𝐴  →  ∃ 𝑥 𝜑 )  ↔  ∀ 𝑦 ( 𝑦  ∈  𝐴  ↔  ( 𝑦  ∈  𝐴  ∧  ∃ 𝑥 𝜑 ) ) )  | 
						
						
							| 4 | 
							
								
							 | 
							rnopab | 
							⊢ ran  { 〈 𝑥 ,  𝑦 〉  ∣  ( 𝑦  ∈  𝐴  ∧  𝜑 ) }  =  { 𝑦  ∣  ∃ 𝑥 ( 𝑦  ∈  𝐴  ∧  𝜑 ) }  | 
						
						
							| 5 | 
							
								
							 | 
							19.42v | 
							⊢ ( ∃ 𝑥 ( 𝑦  ∈  𝐴  ∧  𝜑 )  ↔  ( 𝑦  ∈  𝐴  ∧  ∃ 𝑥 𝜑 ) )  | 
						
						
							| 6 | 
							
								5
							 | 
							abbii | 
							⊢ { 𝑦  ∣  ∃ 𝑥 ( 𝑦  ∈  𝐴  ∧  𝜑 ) }  =  { 𝑦  ∣  ( 𝑦  ∈  𝐴  ∧  ∃ 𝑥 𝜑 ) }  | 
						
						
							| 7 | 
							
								4 6
							 | 
							eqtri | 
							⊢ ran  { 〈 𝑥 ,  𝑦 〉  ∣  ( 𝑦  ∈  𝐴  ∧  𝜑 ) }  =  { 𝑦  ∣  ( 𝑦  ∈  𝐴  ∧  ∃ 𝑥 𝜑 ) }  | 
						
						
							| 8 | 
							
								7
							 | 
							eqeq1i | 
							⊢ ( ran  { 〈 𝑥 ,  𝑦 〉  ∣  ( 𝑦  ∈  𝐴  ∧  𝜑 ) }  =  𝐴  ↔  { 𝑦  ∣  ( 𝑦  ∈  𝐴  ∧  ∃ 𝑥 𝜑 ) }  =  𝐴 )  | 
						
						
							| 9 | 
							
								
							 | 
							eqcom | 
							⊢ ( 𝐴  =  { 𝑦  ∣  ( 𝑦  ∈  𝐴  ∧  ∃ 𝑥 𝜑 ) }  ↔  { 𝑦  ∣  ( 𝑦  ∈  𝐴  ∧  ∃ 𝑥 𝜑 ) }  =  𝐴 )  | 
						
						
							| 10 | 
							
								
							 | 
							eqabb | 
							⊢ ( 𝐴  =  { 𝑦  ∣  ( 𝑦  ∈  𝐴  ∧  ∃ 𝑥 𝜑 ) }  ↔  ∀ 𝑦 ( 𝑦  ∈  𝐴  ↔  ( 𝑦  ∈  𝐴  ∧  ∃ 𝑥 𝜑 ) ) )  | 
						
						
							| 11 | 
							
								8 9 10
							 | 
							3bitr2ri | 
							⊢ ( ∀ 𝑦 ( 𝑦  ∈  𝐴  ↔  ( 𝑦  ∈  𝐴  ∧  ∃ 𝑥 𝜑 ) )  ↔  ran  { 〈 𝑥 ,  𝑦 〉  ∣  ( 𝑦  ∈  𝐴  ∧  𝜑 ) }  =  𝐴 )  | 
						
						
							| 12 | 
							
								1 3 11
							 | 
							3bitri | 
							⊢ ( ∀ 𝑦  ∈  𝐴 ∃ 𝑥 𝜑  ↔  ran  { 〈 𝑥 ,  𝑦 〉  ∣  ( 𝑦  ∈  𝐴  ∧  𝜑 ) }  =  𝐴 )  |