Description: A positive real is its own absolute value. (Contributed by SN, 1-Oct-2025)
Ref | Expression | ||
---|---|---|---|
Assertion | rpabsid | |- ( R e. RR+ -> ( abs ` R ) = R ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rpre | |- ( R e. RR+ -> R e. RR ) |
|
2 | rpge0 | |- ( R e. RR+ -> 0 <_ R ) |
|
3 | absid | |- ( ( R e. RR /\ 0 <_ R ) -> ( abs ` R ) = R ) |
|
4 | 1 2 3 | syl2anc | |- ( R e. RR+ -> ( abs ` R ) = R ) |