| Step | Hyp | Ref | Expression | 
						
							| 1 |  | rpdp2cl.a |  |-  A e. NN0 | 
						
							| 2 |  | rpdp2cl.b |  |-  B e. RR+ | 
						
							| 3 |  | df-dp2 |  |-  _ A B = ( A + ( B / ; 1 0 ) ) | 
						
							| 4 | 1 | nn0rei |  |-  A e. RR | 
						
							| 5 |  | rpssre |  |-  RR+ C_ RR | 
						
							| 6 |  | 10nn |  |-  ; 1 0 e. NN | 
						
							| 7 |  | nnrp |  |-  ( ; 1 0 e. NN -> ; 1 0 e. RR+ ) | 
						
							| 8 | 6 7 | ax-mp |  |-  ; 1 0 e. RR+ | 
						
							| 9 |  | rpdivcl |  |-  ( ( B e. RR+ /\ ; 1 0 e. RR+ ) -> ( B / ; 1 0 ) e. RR+ ) | 
						
							| 10 | 2 8 9 | mp2an |  |-  ( B / ; 1 0 ) e. RR+ | 
						
							| 11 | 5 10 | sselii |  |-  ( B / ; 1 0 ) e. RR | 
						
							| 12 |  | readdcl |  |-  ( ( A e. RR /\ ( B / ; 1 0 ) e. RR ) -> ( A + ( B / ; 1 0 ) ) e. RR ) | 
						
							| 13 | 4 11 12 | mp2an |  |-  ( A + ( B / ; 1 0 ) ) e. RR | 
						
							| 14 | 4 11 | pm3.2i |  |-  ( A e. RR /\ ( B / ; 1 0 ) e. RR ) | 
						
							| 15 | 1 | nn0ge0i |  |-  0 <_ A | 
						
							| 16 |  | rpgt0 |  |-  ( ( B / ; 1 0 ) e. RR+ -> 0 < ( B / ; 1 0 ) ) | 
						
							| 17 | 10 16 | ax-mp |  |-  0 < ( B / ; 1 0 ) | 
						
							| 18 | 15 17 | pm3.2i |  |-  ( 0 <_ A /\ 0 < ( B / ; 1 0 ) ) | 
						
							| 19 |  | addgegt0 |  |-  ( ( ( A e. RR /\ ( B / ; 1 0 ) e. RR ) /\ ( 0 <_ A /\ 0 < ( B / ; 1 0 ) ) ) -> 0 < ( A + ( B / ; 1 0 ) ) ) | 
						
							| 20 | 14 18 19 | mp2an |  |-  0 < ( A + ( B / ; 1 0 ) ) | 
						
							| 21 |  | elrp |  |-  ( ( A + ( B / ; 1 0 ) ) e. RR+ <-> ( ( A + ( B / ; 1 0 ) ) e. RR /\ 0 < ( A + ( B / ; 1 0 ) ) ) ) | 
						
							| 22 | 13 20 21 | mpbir2an |  |-  ( A + ( B / ; 1 0 ) ) e. RR+ | 
						
							| 23 | 3 22 | eqeltri |  |-  _ A B e. RR+ |