| Step | Hyp | Ref | Expression | 
						
							| 1 |  | rpdp2cl.a | ⊢ 𝐴  ∈  ℕ0 | 
						
							| 2 |  | rpdp2cl.b | ⊢ 𝐵  ∈  ℝ+ | 
						
							| 3 |  | df-dp2 | ⊢ _ 𝐴 𝐵  =  ( 𝐴  +  ( 𝐵  /  ; 1 0 ) ) | 
						
							| 4 | 1 | nn0rei | ⊢ 𝐴  ∈  ℝ | 
						
							| 5 |  | rpssre | ⊢ ℝ+  ⊆  ℝ | 
						
							| 6 |  | 10nn | ⊢ ; 1 0  ∈  ℕ | 
						
							| 7 |  | nnrp | ⊢ ( ; 1 0  ∈  ℕ  →  ; 1 0  ∈  ℝ+ ) | 
						
							| 8 | 6 7 | ax-mp | ⊢ ; 1 0  ∈  ℝ+ | 
						
							| 9 |  | rpdivcl | ⊢ ( ( 𝐵  ∈  ℝ+  ∧  ; 1 0  ∈  ℝ+ )  →  ( 𝐵  /  ; 1 0 )  ∈  ℝ+ ) | 
						
							| 10 | 2 8 9 | mp2an | ⊢ ( 𝐵  /  ; 1 0 )  ∈  ℝ+ | 
						
							| 11 | 5 10 | sselii | ⊢ ( 𝐵  /  ; 1 0 )  ∈  ℝ | 
						
							| 12 |  | readdcl | ⊢ ( ( 𝐴  ∈  ℝ  ∧  ( 𝐵  /  ; 1 0 )  ∈  ℝ )  →  ( 𝐴  +  ( 𝐵  /  ; 1 0 ) )  ∈  ℝ ) | 
						
							| 13 | 4 11 12 | mp2an | ⊢ ( 𝐴  +  ( 𝐵  /  ; 1 0 ) )  ∈  ℝ | 
						
							| 14 | 4 11 | pm3.2i | ⊢ ( 𝐴  ∈  ℝ  ∧  ( 𝐵  /  ; 1 0 )  ∈  ℝ ) | 
						
							| 15 | 1 | nn0ge0i | ⊢ 0  ≤  𝐴 | 
						
							| 16 |  | rpgt0 | ⊢ ( ( 𝐵  /  ; 1 0 )  ∈  ℝ+  →  0  <  ( 𝐵  /  ; 1 0 ) ) | 
						
							| 17 | 10 16 | ax-mp | ⊢ 0  <  ( 𝐵  /  ; 1 0 ) | 
						
							| 18 | 15 17 | pm3.2i | ⊢ ( 0  ≤  𝐴  ∧  0  <  ( 𝐵  /  ; 1 0 ) ) | 
						
							| 19 |  | addgegt0 | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  ( 𝐵  /  ; 1 0 )  ∈  ℝ )  ∧  ( 0  ≤  𝐴  ∧  0  <  ( 𝐵  /  ; 1 0 ) ) )  →  0  <  ( 𝐴  +  ( 𝐵  /  ; 1 0 ) ) ) | 
						
							| 20 | 14 18 19 | mp2an | ⊢ 0  <  ( 𝐴  +  ( 𝐵  /  ; 1 0 ) ) | 
						
							| 21 |  | elrp | ⊢ ( ( 𝐴  +  ( 𝐵  /  ; 1 0 ) )  ∈  ℝ+  ↔  ( ( 𝐴  +  ( 𝐵  /  ; 1 0 ) )  ∈  ℝ  ∧  0  <  ( 𝐴  +  ( 𝐵  /  ; 1 0 ) ) ) ) | 
						
							| 22 | 13 20 21 | mpbir2an | ⊢ ( 𝐴  +  ( 𝐵  /  ; 1 0 ) )  ∈  ℝ+ | 
						
							| 23 | 3 22 | eqeltri | ⊢ _ 𝐴 𝐵  ∈  ℝ+ |