Metamath Proof Explorer


Theorem rpdp2cl2

Description: Closure for a decimal fraction with no decimal expansion in the positive real numbers. (Contributed by Thierry Arnoux, 25-Dec-2021)

Ref Expression
Hypothesis rpdp2cl2.a 𝐴 ∈ ℕ
Assertion rpdp2cl2 𝐴 0 ∈ ℝ+

Proof

Step Hyp Ref Expression
1 rpdp2cl2.a 𝐴 ∈ ℕ
2 1 nnnn0i 𝐴 ∈ ℕ0
3 2 dp20u 𝐴 0 = 𝐴
4 nnrp ( 𝐴 ∈ ℕ → 𝐴 ∈ ℝ+ )
5 1 4 ax-mp 𝐴 ∈ ℝ+
6 3 5 eqeltri 𝐴 0 ∈ ℝ+