| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rprmcl.b |
|- B = ( Base ` R ) |
| 2 |
|
rprmcl.p |
|- P = ( RPrime ` R ) |
| 3 |
|
rprmcl.r |
|- ( ph -> R e. V ) |
| 4 |
|
rprmcl.x |
|- ( ph -> X e. P ) |
| 5 |
4 2
|
eleqtrdi |
|- ( ph -> X e. ( RPrime ` R ) ) |
| 6 |
|
eqid |
|- ( Unit ` R ) = ( Unit ` R ) |
| 7 |
|
eqid |
|- ( 0g ` R ) = ( 0g ` R ) |
| 8 |
|
eqid |
|- ( ||r ` R ) = ( ||r ` R ) |
| 9 |
|
eqid |
|- ( .r ` R ) = ( .r ` R ) |
| 10 |
1 6 7 8 9
|
isrprm |
|- ( R e. V -> ( X e. ( RPrime ` R ) <-> ( X e. ( B \ ( ( Unit ` R ) u. { ( 0g ` R ) } ) ) /\ A. x e. B A. y e. B ( X ( ||r ` R ) ( x ( .r ` R ) y ) -> ( X ( ||r ` R ) x \/ X ( ||r ` R ) y ) ) ) ) ) |
| 11 |
10
|
simprbda |
|- ( ( R e. V /\ X e. ( RPrime ` R ) ) -> X e. ( B \ ( ( Unit ` R ) u. { ( 0g ` R ) } ) ) ) |
| 12 |
11
|
eldifad |
|- ( ( R e. V /\ X e. ( RPrime ` R ) ) -> X e. B ) |
| 13 |
3 5 12
|
syl2anc |
|- ( ph -> X e. B ) |