Metamath Proof Explorer


Theorem rrvmbfm

Description: A real-valued random variable is a measurable function from its sample space to the Borel sigma-algebra. (Contributed by Thierry Arnoux, 25-Jan-2017)

Ref Expression
Hypothesis isrrvv.1
|- ( ph -> P e. Prob )
Assertion rrvmbfm
|- ( ph -> ( X e. ( rRndVar ` P ) <-> X e. ( dom P MblFnM BrSiga ) ) )

Proof

Step Hyp Ref Expression
1 isrrvv.1
 |-  ( ph -> P e. Prob )
2 dmeq
 |-  ( p = P -> dom p = dom P )
3 2 oveq1d
 |-  ( p = P -> ( dom p MblFnM BrSiga ) = ( dom P MblFnM BrSiga ) )
4 df-rrv
 |-  rRndVar = ( p e. Prob |-> ( dom p MblFnM BrSiga ) )
5 ovex
 |-  ( dom P MblFnM BrSiga ) e. _V
6 3 4 5 fvmpt
 |-  ( P e. Prob -> ( rRndVar ` P ) = ( dom P MblFnM BrSiga ) )
7 1 6 syl
 |-  ( ph -> ( rRndVar ` P ) = ( dom P MblFnM BrSiga ) )
8 7 eleq2d
 |-  ( ph -> ( X e. ( rRndVar ` P ) <-> X e. ( dom P MblFnM BrSiga ) ) )