Description: A real-valued random variable is a measurable function from its sample space to the Borel sigma-algebra. (Contributed by Thierry Arnoux, 25-Jan-2017)
Ref | Expression | ||
---|---|---|---|
Hypothesis | isrrvv.1 | |- ( ph -> P e. Prob ) |
|
Assertion | rrvmbfm | |- ( ph -> ( X e. ( rRndVar ` P ) <-> X e. ( dom P MblFnM BrSiga ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isrrvv.1 | |- ( ph -> P e. Prob ) |
|
2 | dmeq | |- ( p = P -> dom p = dom P ) |
|
3 | 2 | oveq1d | |- ( p = P -> ( dom p MblFnM BrSiga ) = ( dom P MblFnM BrSiga ) ) |
4 | df-rrv | |- rRndVar = ( p e. Prob |-> ( dom p MblFnM BrSiga ) ) |
|
5 | ovex | |- ( dom P MblFnM BrSiga ) e. _V |
|
6 | 3 4 5 | fvmpt | |- ( P e. Prob -> ( rRndVar ` P ) = ( dom P MblFnM BrSiga ) ) |
7 | 1 6 | syl | |- ( ph -> ( rRndVar ` P ) = ( dom P MblFnM BrSiga ) ) |
8 | 7 | eleq2d | |- ( ph -> ( X e. ( rRndVar ` P ) <-> X e. ( dom P MblFnM BrSiga ) ) ) |