Description: A real-valued random variable is a measurable function from its sample space to the Borel sigma-algebra. (Contributed by Thierry Arnoux, 25-Jan-2017)
Ref | Expression | ||
---|---|---|---|
Hypothesis | isrrvv.1 | ⊢ ( 𝜑 → 𝑃 ∈ Prob ) | |
Assertion | rrvmbfm | ⊢ ( 𝜑 → ( 𝑋 ∈ ( rRndVar ‘ 𝑃 ) ↔ 𝑋 ∈ ( dom 𝑃 MblFnM 𝔅ℝ ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isrrvv.1 | ⊢ ( 𝜑 → 𝑃 ∈ Prob ) | |
2 | dmeq | ⊢ ( 𝑝 = 𝑃 → dom 𝑝 = dom 𝑃 ) | |
3 | 2 | oveq1d | ⊢ ( 𝑝 = 𝑃 → ( dom 𝑝 MblFnM 𝔅ℝ ) = ( dom 𝑃 MblFnM 𝔅ℝ ) ) |
4 | df-rrv | ⊢ rRndVar = ( 𝑝 ∈ Prob ↦ ( dom 𝑝 MblFnM 𝔅ℝ ) ) | |
5 | ovex | ⊢ ( dom 𝑃 MblFnM 𝔅ℝ ) ∈ V | |
6 | 3 4 5 | fvmpt | ⊢ ( 𝑃 ∈ Prob → ( rRndVar ‘ 𝑃 ) = ( dom 𝑃 MblFnM 𝔅ℝ ) ) |
7 | 1 6 | syl | ⊢ ( 𝜑 → ( rRndVar ‘ 𝑃 ) = ( dom 𝑃 MblFnM 𝔅ℝ ) ) |
8 | 7 | eleq2d | ⊢ ( 𝜑 → ( 𝑋 ∈ ( rRndVar ‘ 𝑃 ) ↔ 𝑋 ∈ ( dom 𝑃 MblFnM 𝔅ℝ ) ) ) |