Metamath Proof Explorer


Theorem rrvmbfm

Description: A real-valued random variable is a measurable function from its sample space to the Borel sigma-algebra. (Contributed by Thierry Arnoux, 25-Jan-2017)

Ref Expression
Hypothesis isrrvv.1 ( 𝜑𝑃 ∈ Prob )
Assertion rrvmbfm ( 𝜑 → ( 𝑋 ∈ ( rRndVar ‘ 𝑃 ) ↔ 𝑋 ∈ ( dom 𝑃 MblFnM 𝔅 ) ) )

Proof

Step Hyp Ref Expression
1 isrrvv.1 ( 𝜑𝑃 ∈ Prob )
2 dmeq ( 𝑝 = 𝑃 → dom 𝑝 = dom 𝑃 )
3 2 oveq1d ( 𝑝 = 𝑃 → ( dom 𝑝 MblFnM 𝔅 ) = ( dom 𝑃 MblFnM 𝔅 ) )
4 df-rrv rRndVar = ( 𝑝 ∈ Prob ↦ ( dom 𝑝 MblFnM 𝔅 ) )
5 ovex ( dom 𝑃 MblFnM 𝔅 ) ∈ V
6 3 4 5 fvmpt ( 𝑃 ∈ Prob → ( rRndVar ‘ 𝑃 ) = ( dom 𝑃 MblFnM 𝔅 ) )
7 1 6 syl ( 𝜑 → ( rRndVar ‘ 𝑃 ) = ( dom 𝑃 MblFnM 𝔅 ) )
8 7 eleq2d ( 𝜑 → ( 𝑋 ∈ ( rRndVar ‘ 𝑃 ) ↔ 𝑋 ∈ ( dom 𝑃 MblFnM 𝔅 ) ) )