Metamath Proof Explorer


Theorem rrx2plord1

Description: The lexicographical ordering for points in the two dimensional Euclidean plane: a point is less than another point if its first coordinate is less than the first coordinate of the other point. (Contributed by AV, 12-Mar-2023)

Ref Expression
Hypothesis rrx2plord.o
|- O = { <. x , y >. | ( ( x e. R /\ y e. R ) /\ ( ( x ` 1 ) < ( y ` 1 ) \/ ( ( x ` 1 ) = ( y ` 1 ) /\ ( x ` 2 ) < ( y ` 2 ) ) ) ) }
Assertion rrx2plord1
|- ( ( X e. R /\ Y e. R /\ ( X ` 1 ) < ( Y ` 1 ) ) -> X O Y )

Proof

Step Hyp Ref Expression
1 rrx2plord.o
 |-  O = { <. x , y >. | ( ( x e. R /\ y e. R ) /\ ( ( x ` 1 ) < ( y ` 1 ) \/ ( ( x ` 1 ) = ( y ` 1 ) /\ ( x ` 2 ) < ( y ` 2 ) ) ) ) }
2 simp3
 |-  ( ( X e. R /\ Y e. R /\ ( X ` 1 ) < ( Y ` 1 ) ) -> ( X ` 1 ) < ( Y ` 1 ) )
3 2 orcd
 |-  ( ( X e. R /\ Y e. R /\ ( X ` 1 ) < ( Y ` 1 ) ) -> ( ( X ` 1 ) < ( Y ` 1 ) \/ ( ( X ` 1 ) = ( Y ` 1 ) /\ ( X ` 2 ) < ( Y ` 2 ) ) ) )
4 1 rrx2plord
 |-  ( ( X e. R /\ Y e. R ) -> ( X O Y <-> ( ( X ` 1 ) < ( Y ` 1 ) \/ ( ( X ` 1 ) = ( Y ` 1 ) /\ ( X ` 2 ) < ( Y ` 2 ) ) ) ) )
5 4 3adant3
 |-  ( ( X e. R /\ Y e. R /\ ( X ` 1 ) < ( Y ` 1 ) ) -> ( X O Y <-> ( ( X ` 1 ) < ( Y ` 1 ) \/ ( ( X ` 1 ) = ( Y ` 1 ) /\ ( X ` 2 ) < ( Y ` 2 ) ) ) ) )
6 3 5 mpbird
 |-  ( ( X e. R /\ Y e. R /\ ( X ` 1 ) < ( Y ` 1 ) ) -> X O Y )