| Step | Hyp | Ref | Expression | 
						
							| 1 |  | rrx2plord.o | ⊢ 𝑂  =  { 〈 𝑥 ,  𝑦 〉  ∣  ( ( 𝑥  ∈  𝑅  ∧  𝑦  ∈  𝑅 )  ∧  ( ( 𝑥 ‘ 1 )  <  ( 𝑦 ‘ 1 )  ∨  ( ( 𝑥 ‘ 1 )  =  ( 𝑦 ‘ 1 )  ∧  ( 𝑥 ‘ 2 )  <  ( 𝑦 ‘ 2 ) ) ) ) } | 
						
							| 2 |  | simp3 | ⊢ ( ( 𝑋  ∈  𝑅  ∧  𝑌  ∈  𝑅  ∧  ( 𝑋 ‘ 1 )  <  ( 𝑌 ‘ 1 ) )  →  ( 𝑋 ‘ 1 )  <  ( 𝑌 ‘ 1 ) ) | 
						
							| 3 | 2 | orcd | ⊢ ( ( 𝑋  ∈  𝑅  ∧  𝑌  ∈  𝑅  ∧  ( 𝑋 ‘ 1 )  <  ( 𝑌 ‘ 1 ) )  →  ( ( 𝑋 ‘ 1 )  <  ( 𝑌 ‘ 1 )  ∨  ( ( 𝑋 ‘ 1 )  =  ( 𝑌 ‘ 1 )  ∧  ( 𝑋 ‘ 2 )  <  ( 𝑌 ‘ 2 ) ) ) ) | 
						
							| 4 | 1 | rrx2plord | ⊢ ( ( 𝑋  ∈  𝑅  ∧  𝑌  ∈  𝑅 )  →  ( 𝑋 𝑂 𝑌  ↔  ( ( 𝑋 ‘ 1 )  <  ( 𝑌 ‘ 1 )  ∨  ( ( 𝑋 ‘ 1 )  =  ( 𝑌 ‘ 1 )  ∧  ( 𝑋 ‘ 2 )  <  ( 𝑌 ‘ 2 ) ) ) ) ) | 
						
							| 5 | 4 | 3adant3 | ⊢ ( ( 𝑋  ∈  𝑅  ∧  𝑌  ∈  𝑅  ∧  ( 𝑋 ‘ 1 )  <  ( 𝑌 ‘ 1 ) )  →  ( 𝑋 𝑂 𝑌  ↔  ( ( 𝑋 ‘ 1 )  <  ( 𝑌 ‘ 1 )  ∨  ( ( 𝑋 ‘ 1 )  =  ( 𝑌 ‘ 1 )  ∧  ( 𝑋 ‘ 2 )  <  ( 𝑌 ‘ 2 ) ) ) ) ) | 
						
							| 6 | 3 5 | mpbird | ⊢ ( ( 𝑋  ∈  𝑅  ∧  𝑌  ∈  𝑅  ∧  ( 𝑋 ‘ 1 )  <  ( 𝑌 ‘ 1 ) )  →  𝑋 𝑂 𝑌 ) |