| Step | Hyp | Ref | Expression | 
						
							| 1 |  | rrx2plord.o | ⊢ 𝑂  =  { 〈 𝑥 ,  𝑦 〉  ∣  ( ( 𝑥  ∈  𝑅  ∧  𝑦  ∈  𝑅 )  ∧  ( ( 𝑥 ‘ 1 )  <  ( 𝑦 ‘ 1 )  ∨  ( ( 𝑥 ‘ 1 )  =  ( 𝑦 ‘ 1 )  ∧  ( 𝑥 ‘ 2 )  <  ( 𝑦 ‘ 2 ) ) ) ) } | 
						
							| 2 |  | df-br | ⊢ ( 𝑋 𝑂 𝑌  ↔  〈 𝑋 ,  𝑌 〉  ∈  𝑂 ) | 
						
							| 3 | 1 | eleq2i | ⊢ ( 〈 𝑋 ,  𝑌 〉  ∈  𝑂  ↔  〈 𝑋 ,  𝑌 〉  ∈  { 〈 𝑥 ,  𝑦 〉  ∣  ( ( 𝑥  ∈  𝑅  ∧  𝑦  ∈  𝑅 )  ∧  ( ( 𝑥 ‘ 1 )  <  ( 𝑦 ‘ 1 )  ∨  ( ( 𝑥 ‘ 1 )  =  ( 𝑦 ‘ 1 )  ∧  ( 𝑥 ‘ 2 )  <  ( 𝑦 ‘ 2 ) ) ) ) } ) | 
						
							| 4 | 2 3 | bitri | ⊢ ( 𝑋 𝑂 𝑌  ↔  〈 𝑋 ,  𝑌 〉  ∈  { 〈 𝑥 ,  𝑦 〉  ∣  ( ( 𝑥  ∈  𝑅  ∧  𝑦  ∈  𝑅 )  ∧  ( ( 𝑥 ‘ 1 )  <  ( 𝑦 ‘ 1 )  ∨  ( ( 𝑥 ‘ 1 )  =  ( 𝑦 ‘ 1 )  ∧  ( 𝑥 ‘ 2 )  <  ( 𝑦 ‘ 2 ) ) ) ) } ) | 
						
							| 5 |  | fveq1 | ⊢ ( 𝑥  =  𝑋  →  ( 𝑥 ‘ 1 )  =  ( 𝑋 ‘ 1 ) ) | 
						
							| 6 |  | fveq1 | ⊢ ( 𝑦  =  𝑌  →  ( 𝑦 ‘ 1 )  =  ( 𝑌 ‘ 1 ) ) | 
						
							| 7 | 5 6 | breqan12d | ⊢ ( ( 𝑥  =  𝑋  ∧  𝑦  =  𝑌 )  →  ( ( 𝑥 ‘ 1 )  <  ( 𝑦 ‘ 1 )  ↔  ( 𝑋 ‘ 1 )  <  ( 𝑌 ‘ 1 ) ) ) | 
						
							| 8 | 5 6 | eqeqan12d | ⊢ ( ( 𝑥  =  𝑋  ∧  𝑦  =  𝑌 )  →  ( ( 𝑥 ‘ 1 )  =  ( 𝑦 ‘ 1 )  ↔  ( 𝑋 ‘ 1 )  =  ( 𝑌 ‘ 1 ) ) ) | 
						
							| 9 |  | fveq1 | ⊢ ( 𝑥  =  𝑋  →  ( 𝑥 ‘ 2 )  =  ( 𝑋 ‘ 2 ) ) | 
						
							| 10 |  | fveq1 | ⊢ ( 𝑦  =  𝑌  →  ( 𝑦 ‘ 2 )  =  ( 𝑌 ‘ 2 ) ) | 
						
							| 11 | 9 10 | breqan12d | ⊢ ( ( 𝑥  =  𝑋  ∧  𝑦  =  𝑌 )  →  ( ( 𝑥 ‘ 2 )  <  ( 𝑦 ‘ 2 )  ↔  ( 𝑋 ‘ 2 )  <  ( 𝑌 ‘ 2 ) ) ) | 
						
							| 12 | 8 11 | anbi12d | ⊢ ( ( 𝑥  =  𝑋  ∧  𝑦  =  𝑌 )  →  ( ( ( 𝑥 ‘ 1 )  =  ( 𝑦 ‘ 1 )  ∧  ( 𝑥 ‘ 2 )  <  ( 𝑦 ‘ 2 ) )  ↔  ( ( 𝑋 ‘ 1 )  =  ( 𝑌 ‘ 1 )  ∧  ( 𝑋 ‘ 2 )  <  ( 𝑌 ‘ 2 ) ) ) ) | 
						
							| 13 | 7 12 | orbi12d | ⊢ ( ( 𝑥  =  𝑋  ∧  𝑦  =  𝑌 )  →  ( ( ( 𝑥 ‘ 1 )  <  ( 𝑦 ‘ 1 )  ∨  ( ( 𝑥 ‘ 1 )  =  ( 𝑦 ‘ 1 )  ∧  ( 𝑥 ‘ 2 )  <  ( 𝑦 ‘ 2 ) ) )  ↔  ( ( 𝑋 ‘ 1 )  <  ( 𝑌 ‘ 1 )  ∨  ( ( 𝑋 ‘ 1 )  =  ( 𝑌 ‘ 1 )  ∧  ( 𝑋 ‘ 2 )  <  ( 𝑌 ‘ 2 ) ) ) ) ) | 
						
							| 14 | 13 | opelopab2a | ⊢ ( ( 𝑋  ∈  𝑅  ∧  𝑌  ∈  𝑅 )  →  ( 〈 𝑋 ,  𝑌 〉  ∈  { 〈 𝑥 ,  𝑦 〉  ∣  ( ( 𝑥  ∈  𝑅  ∧  𝑦  ∈  𝑅 )  ∧  ( ( 𝑥 ‘ 1 )  <  ( 𝑦 ‘ 1 )  ∨  ( ( 𝑥 ‘ 1 )  =  ( 𝑦 ‘ 1 )  ∧  ( 𝑥 ‘ 2 )  <  ( 𝑦 ‘ 2 ) ) ) ) }  ↔  ( ( 𝑋 ‘ 1 )  <  ( 𝑌 ‘ 1 )  ∨  ( ( 𝑋 ‘ 1 )  =  ( 𝑌 ‘ 1 )  ∧  ( 𝑋 ‘ 2 )  <  ( 𝑌 ‘ 2 ) ) ) ) ) | 
						
							| 15 | 4 14 | bitrid | ⊢ ( ( 𝑋  ∈  𝑅  ∧  𝑌  ∈  𝑅 )  →  ( 𝑋 𝑂 𝑌  ↔  ( ( 𝑋 ‘ 1 )  <  ( 𝑌 ‘ 1 )  ∨  ( ( 𝑋 ‘ 1 )  =  ( 𝑌 ‘ 1 )  ∧  ( 𝑋 ‘ 2 )  <  ( 𝑌 ‘ 2 ) ) ) ) ) |