Metamath Proof Explorer


Theorem rusbcALT

Description: A version of Russell's paradox which is proven using proper substitution. (Contributed by Andrew Salmon, 18-Jun-2011) (New usage is discouraged.) (Proof modification is discouraged.)

Ref Expression
Assertion rusbcALT
|- { x | x e/ x } e/ _V

Proof

Step Hyp Ref Expression
1 pm5.19
 |-  -. ( { x | x e/ x } e. { x | x e/ x } <-> -. { x | x e/ x } e. { x | x e/ x } )
2 sbcnel12g
 |-  ( { x | x e/ x } e. _V -> ( [. { x | x e/ x } / x ]. x e/ x <-> [_ { x | x e/ x } / x ]_ x e/ [_ { x | x e/ x } / x ]_ x ) )
3 sbc8g
 |-  ( { x | x e/ x } e. _V -> ( [. { x | x e/ x } / x ]. x e/ x <-> { x | x e/ x } e. { x | x e/ x } ) )
4 df-nel
 |-  ( [_ { x | x e/ x } / x ]_ x e/ [_ { x | x e/ x } / x ]_ x <-> -. [_ { x | x e/ x } / x ]_ x e. [_ { x | x e/ x } / x ]_ x )
5 csbvarg
 |-  ( { x | x e/ x } e. _V -> [_ { x | x e/ x } / x ]_ x = { x | x e/ x } )
6 5 5 eleq12d
 |-  ( { x | x e/ x } e. _V -> ( [_ { x | x e/ x } / x ]_ x e. [_ { x | x e/ x } / x ]_ x <-> { x | x e/ x } e. { x | x e/ x } ) )
7 6 notbid
 |-  ( { x | x e/ x } e. _V -> ( -. [_ { x | x e/ x } / x ]_ x e. [_ { x | x e/ x } / x ]_ x <-> -. { x | x e/ x } e. { x | x e/ x } ) )
8 4 7 syl5bb
 |-  ( { x | x e/ x } e. _V -> ( [_ { x | x e/ x } / x ]_ x e/ [_ { x | x e/ x } / x ]_ x <-> -. { x | x e/ x } e. { x | x e/ x } ) )
9 2 3 8 3bitr3d
 |-  ( { x | x e/ x } e. _V -> ( { x | x e/ x } e. { x | x e/ x } <-> -. { x | x e/ x } e. { x | x e/ x } ) )
10 1 9 mto
 |-  -. { x | x e/ x } e. _V
11 df-nel
 |-  ( { x | x e/ x } e/ _V <-> -. { x | x e/ x } e. _V )
12 10 11 mpbir
 |-  { x | x e/ x } e/ _V