Metamath Proof Explorer


Theorem rusbcALT

Description: A version of Russell's paradox which is proven using proper substitution. (Contributed by Andrew Salmon, 18-Jun-2011) (New usage is discouraged.) (Proof modification is discouraged.)

Ref Expression
Assertion rusbcALT { 𝑥𝑥𝑥 } ∉ V

Proof

Step Hyp Ref Expression
1 pm5.19 ¬ ( { 𝑥𝑥𝑥 } ∈ { 𝑥𝑥𝑥 } ↔ ¬ { 𝑥𝑥𝑥 } ∈ { 𝑥𝑥𝑥 } )
2 sbcnel12g ( { 𝑥𝑥𝑥 } ∈ V → ( [ { 𝑥𝑥𝑥 } / 𝑥 ] 𝑥𝑥 { 𝑥𝑥𝑥 } / 𝑥 𝑥 { 𝑥𝑥𝑥 } / 𝑥 𝑥 ) )
3 sbc8g ( { 𝑥𝑥𝑥 } ∈ V → ( [ { 𝑥𝑥𝑥 } / 𝑥 ] 𝑥𝑥 ↔ { 𝑥𝑥𝑥 } ∈ { 𝑥𝑥𝑥 } ) )
4 df-nel ( { 𝑥𝑥𝑥 } / 𝑥 𝑥 { 𝑥𝑥𝑥 } / 𝑥 𝑥 ↔ ¬ { 𝑥𝑥𝑥 } / 𝑥 𝑥 { 𝑥𝑥𝑥 } / 𝑥 𝑥 )
5 csbvarg ( { 𝑥𝑥𝑥 } ∈ V → { 𝑥𝑥𝑥 } / 𝑥 𝑥 = { 𝑥𝑥𝑥 } )
6 5 5 eleq12d ( { 𝑥𝑥𝑥 } ∈ V → ( { 𝑥𝑥𝑥 } / 𝑥 𝑥 { 𝑥𝑥𝑥 } / 𝑥 𝑥 ↔ { 𝑥𝑥𝑥 } ∈ { 𝑥𝑥𝑥 } ) )
7 6 notbid ( { 𝑥𝑥𝑥 } ∈ V → ( ¬ { 𝑥𝑥𝑥 } / 𝑥 𝑥 { 𝑥𝑥𝑥 } / 𝑥 𝑥 ↔ ¬ { 𝑥𝑥𝑥 } ∈ { 𝑥𝑥𝑥 } ) )
8 4 7 syl5bb ( { 𝑥𝑥𝑥 } ∈ V → ( { 𝑥𝑥𝑥 } / 𝑥 𝑥 { 𝑥𝑥𝑥 } / 𝑥 𝑥 ↔ ¬ { 𝑥𝑥𝑥 } ∈ { 𝑥𝑥𝑥 } ) )
9 2 3 8 3bitr3d ( { 𝑥𝑥𝑥 } ∈ V → ( { 𝑥𝑥𝑥 } ∈ { 𝑥𝑥𝑥 } ↔ ¬ { 𝑥𝑥𝑥 } ∈ { 𝑥𝑥𝑥 } ) )
10 1 9 mto ¬ { 𝑥𝑥𝑥 } ∈ V
11 df-nel ( { 𝑥𝑥𝑥 } ∉ V ↔ ¬ { 𝑥𝑥𝑥 } ∈ V )
12 10 11 mpbir { 𝑥𝑥𝑥 } ∉ V