Step |
Hyp |
Ref |
Expression |
1 |
|
satffun |
|- ( ( M e. V /\ E e. W /\ N e. _om ) -> Fun ( ( M Sat E ) ` N ) ) |
2 |
|
satfdmfmla |
|- ( ( M e. V /\ E e. W /\ N e. _om ) -> dom ( ( M Sat E ) ` N ) = ( Fmla ` N ) ) |
3 |
|
df-fn |
|- ( ( ( M Sat E ) ` N ) Fn ( Fmla ` N ) <-> ( Fun ( ( M Sat E ) ` N ) /\ dom ( ( M Sat E ) ` N ) = ( Fmla ` N ) ) ) |
4 |
1 2 3
|
sylanbrc |
|- ( ( M e. V /\ E e. W /\ N e. _om ) -> ( ( M Sat E ) ` N ) Fn ( Fmla ` N ) ) |
5 |
|
satfrnmapom |
|- ( ( M e. V /\ E e. W /\ N e. _om ) -> ran ( ( M Sat E ) ` N ) C_ ~P ( M ^m _om ) ) |
6 |
|
df-f |
|- ( ( ( M Sat E ) ` N ) : ( Fmla ` N ) --> ~P ( M ^m _om ) <-> ( ( ( M Sat E ) ` N ) Fn ( Fmla ` N ) /\ ran ( ( M Sat E ) ` N ) C_ ~P ( M ^m _om ) ) ) |
7 |
4 5 6
|
sylanbrc |
|- ( ( M e. V /\ E e. W /\ N e. _om ) -> ( ( M Sat E ) ` N ) : ( Fmla ` N ) --> ~P ( M ^m _om ) ) |