| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fveq2 |  |-  ( a = (/) -> ( ( M Sat E ) ` a ) = ( ( M Sat E ) ` (/) ) ) | 
						
							| 2 | 1 | rneqd |  |-  ( a = (/) -> ran ( ( M Sat E ) ` a ) = ran ( ( M Sat E ) ` (/) ) ) | 
						
							| 3 | 2 | eleq2d |  |-  ( a = (/) -> ( n e. ran ( ( M Sat E ) ` a ) <-> n e. ran ( ( M Sat E ) ` (/) ) ) ) | 
						
							| 4 | 3 | imbi1d |  |-  ( a = (/) -> ( ( n e. ran ( ( M Sat E ) ` a ) -> n e. ~P ( M ^m _om ) ) <-> ( n e. ran ( ( M Sat E ) ` (/) ) -> n e. ~P ( M ^m _om ) ) ) ) | 
						
							| 5 | 4 | imbi2d |  |-  ( a = (/) -> ( ( ( M e. V /\ E e. W ) -> ( n e. ran ( ( M Sat E ) ` a ) -> n e. ~P ( M ^m _om ) ) ) <-> ( ( M e. V /\ E e. W ) -> ( n e. ran ( ( M Sat E ) ` (/) ) -> n e. ~P ( M ^m _om ) ) ) ) ) | 
						
							| 6 |  | fveq2 |  |-  ( a = b -> ( ( M Sat E ) ` a ) = ( ( M Sat E ) ` b ) ) | 
						
							| 7 | 6 | rneqd |  |-  ( a = b -> ran ( ( M Sat E ) ` a ) = ran ( ( M Sat E ) ` b ) ) | 
						
							| 8 | 7 | eleq2d |  |-  ( a = b -> ( n e. ran ( ( M Sat E ) ` a ) <-> n e. ran ( ( M Sat E ) ` b ) ) ) | 
						
							| 9 | 8 | imbi1d |  |-  ( a = b -> ( ( n e. ran ( ( M Sat E ) ` a ) -> n e. ~P ( M ^m _om ) ) <-> ( n e. ran ( ( M Sat E ) ` b ) -> n e. ~P ( M ^m _om ) ) ) ) | 
						
							| 10 | 9 | imbi2d |  |-  ( a = b -> ( ( ( M e. V /\ E e. W ) -> ( n e. ran ( ( M Sat E ) ` a ) -> n e. ~P ( M ^m _om ) ) ) <-> ( ( M e. V /\ E e. W ) -> ( n e. ran ( ( M Sat E ) ` b ) -> n e. ~P ( M ^m _om ) ) ) ) ) | 
						
							| 11 |  | fveq2 |  |-  ( a = suc b -> ( ( M Sat E ) ` a ) = ( ( M Sat E ) ` suc b ) ) | 
						
							| 12 | 11 | rneqd |  |-  ( a = suc b -> ran ( ( M Sat E ) ` a ) = ran ( ( M Sat E ) ` suc b ) ) | 
						
							| 13 | 12 | eleq2d |  |-  ( a = suc b -> ( n e. ran ( ( M Sat E ) ` a ) <-> n e. ran ( ( M Sat E ) ` suc b ) ) ) | 
						
							| 14 | 13 | imbi1d |  |-  ( a = suc b -> ( ( n e. ran ( ( M Sat E ) ` a ) -> n e. ~P ( M ^m _om ) ) <-> ( n e. ran ( ( M Sat E ) ` suc b ) -> n e. ~P ( M ^m _om ) ) ) ) | 
						
							| 15 | 14 | imbi2d |  |-  ( a = suc b -> ( ( ( M e. V /\ E e. W ) -> ( n e. ran ( ( M Sat E ) ` a ) -> n e. ~P ( M ^m _om ) ) ) <-> ( ( M e. V /\ E e. W ) -> ( n e. ran ( ( M Sat E ) ` suc b ) -> n e. ~P ( M ^m _om ) ) ) ) ) | 
						
							| 16 |  | fveq2 |  |-  ( a = N -> ( ( M Sat E ) ` a ) = ( ( M Sat E ) ` N ) ) | 
						
							| 17 | 16 | rneqd |  |-  ( a = N -> ran ( ( M Sat E ) ` a ) = ran ( ( M Sat E ) ` N ) ) | 
						
							| 18 | 17 | eleq2d |  |-  ( a = N -> ( n e. ran ( ( M Sat E ) ` a ) <-> n e. ran ( ( M Sat E ) ` N ) ) ) | 
						
							| 19 | 18 | imbi1d |  |-  ( a = N -> ( ( n e. ran ( ( M Sat E ) ` a ) -> n e. ~P ( M ^m _om ) ) <-> ( n e. ran ( ( M Sat E ) ` N ) -> n e. ~P ( M ^m _om ) ) ) ) | 
						
							| 20 | 19 | imbi2d |  |-  ( a = N -> ( ( ( M e. V /\ E e. W ) -> ( n e. ran ( ( M Sat E ) ` a ) -> n e. ~P ( M ^m _om ) ) ) <-> ( ( M e. V /\ E e. W ) -> ( n e. ran ( ( M Sat E ) ` N ) -> n e. ~P ( M ^m _om ) ) ) ) ) | 
						
							| 21 |  | eqid |  |-  ( M Sat E ) = ( M Sat E ) | 
						
							| 22 | 21 | satfv0 |  |-  ( ( M e. V /\ E e. W ) -> ( ( M Sat E ) ` (/) ) = { <. x , y >. | E. i e. _om E. j e. _om ( x = ( i e.g j ) /\ y = { f e. ( M ^m _om ) | ( f ` i ) E ( f ` j ) } ) } ) | 
						
							| 23 | 22 | rneqd |  |-  ( ( M e. V /\ E e. W ) -> ran ( ( M Sat E ) ` (/) ) = ran { <. x , y >. | E. i e. _om E. j e. _om ( x = ( i e.g j ) /\ y = { f e. ( M ^m _om ) | ( f ` i ) E ( f ` j ) } ) } ) | 
						
							| 24 | 23 | eleq2d |  |-  ( ( M e. V /\ E e. W ) -> ( n e. ran ( ( M Sat E ) ` (/) ) <-> n e. ran { <. x , y >. | E. i e. _om E. j e. _om ( x = ( i e.g j ) /\ y = { f e. ( M ^m _om ) | ( f ` i ) E ( f ` j ) } ) } ) ) | 
						
							| 25 |  | rnopab |  |-  ran { <. x , y >. | E. i e. _om E. j e. _om ( x = ( i e.g j ) /\ y = { f e. ( M ^m _om ) | ( f ` i ) E ( f ` j ) } ) } = { y | E. x E. i e. _om E. j e. _om ( x = ( i e.g j ) /\ y = { f e. ( M ^m _om ) | ( f ` i ) E ( f ` j ) } ) } | 
						
							| 26 | 25 | eleq2i |  |-  ( n e. ran { <. x , y >. | E. i e. _om E. j e. _om ( x = ( i e.g j ) /\ y = { f e. ( M ^m _om ) | ( f ` i ) E ( f ` j ) } ) } <-> n e. { y | E. x E. i e. _om E. j e. _om ( x = ( i e.g j ) /\ y = { f e. ( M ^m _om ) | ( f ` i ) E ( f ` j ) } ) } ) | 
						
							| 27 |  | vex |  |-  n e. _V | 
						
							| 28 |  | eqeq1 |  |-  ( y = n -> ( y = { f e. ( M ^m _om ) | ( f ` i ) E ( f ` j ) } <-> n = { f e. ( M ^m _om ) | ( f ` i ) E ( f ` j ) } ) ) | 
						
							| 29 | 28 | anbi2d |  |-  ( y = n -> ( ( x = ( i e.g j ) /\ y = { f e. ( M ^m _om ) | ( f ` i ) E ( f ` j ) } ) <-> ( x = ( i e.g j ) /\ n = { f e. ( M ^m _om ) | ( f ` i ) E ( f ` j ) } ) ) ) | 
						
							| 30 | 29 | 2rexbidv |  |-  ( y = n -> ( E. i e. _om E. j e. _om ( x = ( i e.g j ) /\ y = { f e. ( M ^m _om ) | ( f ` i ) E ( f ` j ) } ) <-> E. i e. _om E. j e. _om ( x = ( i e.g j ) /\ n = { f e. ( M ^m _om ) | ( f ` i ) E ( f ` j ) } ) ) ) | 
						
							| 31 | 30 | exbidv |  |-  ( y = n -> ( E. x E. i e. _om E. j e. _om ( x = ( i e.g j ) /\ y = { f e. ( M ^m _om ) | ( f ` i ) E ( f ` j ) } ) <-> E. x E. i e. _om E. j e. _om ( x = ( i e.g j ) /\ n = { f e. ( M ^m _om ) | ( f ` i ) E ( f ` j ) } ) ) ) | 
						
							| 32 | 27 31 | elab |  |-  ( n e. { y | E. x E. i e. _om E. j e. _om ( x = ( i e.g j ) /\ y = { f e. ( M ^m _om ) | ( f ` i ) E ( f ` j ) } ) } <-> E. x E. i e. _om E. j e. _om ( x = ( i e.g j ) /\ n = { f e. ( M ^m _om ) | ( f ` i ) E ( f ` j ) } ) ) | 
						
							| 33 |  | ovex |  |-  ( M ^m _om ) e. _V | 
						
							| 34 |  | ssrab2 |  |-  { f e. ( M ^m _om ) | ( f ` i ) E ( f ` j ) } C_ ( M ^m _om ) | 
						
							| 35 | 33 34 | elpwi2 |  |-  { f e. ( M ^m _om ) | ( f ` i ) E ( f ` j ) } e. ~P ( M ^m _om ) | 
						
							| 36 |  | eleq1 |  |-  ( n = { f e. ( M ^m _om ) | ( f ` i ) E ( f ` j ) } -> ( n e. ~P ( M ^m _om ) <-> { f e. ( M ^m _om ) | ( f ` i ) E ( f ` j ) } e. ~P ( M ^m _om ) ) ) | 
						
							| 37 | 35 36 | mpbiri |  |-  ( n = { f e. ( M ^m _om ) | ( f ` i ) E ( f ` j ) } -> n e. ~P ( M ^m _om ) ) | 
						
							| 38 | 37 | adantl |  |-  ( ( x = ( i e.g j ) /\ n = { f e. ( M ^m _om ) | ( f ` i ) E ( f ` j ) } ) -> n e. ~P ( M ^m _om ) ) | 
						
							| 39 | 38 | a1i |  |-  ( ( i e. _om /\ j e. _om ) -> ( ( x = ( i e.g j ) /\ n = { f e. ( M ^m _om ) | ( f ` i ) E ( f ` j ) } ) -> n e. ~P ( M ^m _om ) ) ) | 
						
							| 40 | 39 | rexlimivv |  |-  ( E. i e. _om E. j e. _om ( x = ( i e.g j ) /\ n = { f e. ( M ^m _om ) | ( f ` i ) E ( f ` j ) } ) -> n e. ~P ( M ^m _om ) ) | 
						
							| 41 | 40 | exlimiv |  |-  ( E. x E. i e. _om E. j e. _om ( x = ( i e.g j ) /\ n = { f e. ( M ^m _om ) | ( f ` i ) E ( f ` j ) } ) -> n e. ~P ( M ^m _om ) ) | 
						
							| 42 | 32 41 | sylbi |  |-  ( n e. { y | E. x E. i e. _om E. j e. _om ( x = ( i e.g j ) /\ y = { f e. ( M ^m _om ) | ( f ` i ) E ( f ` j ) } ) } -> n e. ~P ( M ^m _om ) ) | 
						
							| 43 | 42 | a1i |  |-  ( ( M e. V /\ E e. W ) -> ( n e. { y | E. x E. i e. _om E. j e. _om ( x = ( i e.g j ) /\ y = { f e. ( M ^m _om ) | ( f ` i ) E ( f ` j ) } ) } -> n e. ~P ( M ^m _om ) ) ) | 
						
							| 44 | 26 43 | biimtrid |  |-  ( ( M e. V /\ E e. W ) -> ( n e. ran { <. x , y >. | E. i e. _om E. j e. _om ( x = ( i e.g j ) /\ y = { f e. ( M ^m _om ) | ( f ` i ) E ( f ` j ) } ) } -> n e. ~P ( M ^m _om ) ) ) | 
						
							| 45 | 24 44 | sylbid |  |-  ( ( M e. V /\ E e. W ) -> ( n e. ran ( ( M Sat E ) ` (/) ) -> n e. ~P ( M ^m _om ) ) ) | 
						
							| 46 | 21 | satfvsuc |  |-  ( ( M e. V /\ E e. W /\ b e. _om ) -> ( ( M Sat E ) ` suc b ) = ( ( ( M Sat E ) ` b ) u. { <. x , y >. | E. u e. ( ( M Sat E ) ` b ) ( E. v e. ( ( M Sat E ) ` b ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = { a e. ( M ^m _om ) | A. z e. M ( { <. i , z >. } u. ( a |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) } ) ) | 
						
							| 47 | 46 | 3expa |  |-  ( ( ( M e. V /\ E e. W ) /\ b e. _om ) -> ( ( M Sat E ) ` suc b ) = ( ( ( M Sat E ) ` b ) u. { <. x , y >. | E. u e. ( ( M Sat E ) ` b ) ( E. v e. ( ( M Sat E ) ` b ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = { a e. ( M ^m _om ) | A. z e. M ( { <. i , z >. } u. ( a |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) } ) ) | 
						
							| 48 | 47 | rneqd |  |-  ( ( ( M e. V /\ E e. W ) /\ b e. _om ) -> ran ( ( M Sat E ) ` suc b ) = ran ( ( ( M Sat E ) ` b ) u. { <. x , y >. | E. u e. ( ( M Sat E ) ` b ) ( E. v e. ( ( M Sat E ) ` b ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = { a e. ( M ^m _om ) | A. z e. M ( { <. i , z >. } u. ( a |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) } ) ) | 
						
							| 49 |  | rnun |  |-  ran ( ( ( M Sat E ) ` b ) u. { <. x , y >. | E. u e. ( ( M Sat E ) ` b ) ( E. v e. ( ( M Sat E ) ` b ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = { a e. ( M ^m _om ) | A. z e. M ( { <. i , z >. } u. ( a |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) } ) = ( ran ( ( M Sat E ) ` b ) u. ran { <. x , y >. | E. u e. ( ( M Sat E ) ` b ) ( E. v e. ( ( M Sat E ) ` b ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = { a e. ( M ^m _om ) | A. z e. M ( { <. i , z >. } u. ( a |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) } ) | 
						
							| 50 | 48 49 | eqtrdi |  |-  ( ( ( M e. V /\ E e. W ) /\ b e. _om ) -> ran ( ( M Sat E ) ` suc b ) = ( ran ( ( M Sat E ) ` b ) u. ran { <. x , y >. | E. u e. ( ( M Sat E ) ` b ) ( E. v e. ( ( M Sat E ) ` b ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = { a e. ( M ^m _om ) | A. z e. M ( { <. i , z >. } u. ( a |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) } ) ) | 
						
							| 51 | 50 | eleq2d |  |-  ( ( ( M e. V /\ E e. W ) /\ b e. _om ) -> ( n e. ran ( ( M Sat E ) ` suc b ) <-> n e. ( ran ( ( M Sat E ) ` b ) u. ran { <. x , y >. | E. u e. ( ( M Sat E ) ` b ) ( E. v e. ( ( M Sat E ) ` b ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = { a e. ( M ^m _om ) | A. z e. M ( { <. i , z >. } u. ( a |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) } ) ) ) | 
						
							| 52 |  | elun |  |-  ( n e. ( ran ( ( M Sat E ) ` b ) u. ran { <. x , y >. | E. u e. ( ( M Sat E ) ` b ) ( E. v e. ( ( M Sat E ) ` b ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = { a e. ( M ^m _om ) | A. z e. M ( { <. i , z >. } u. ( a |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) } ) <-> ( n e. ran ( ( M Sat E ) ` b ) \/ n e. ran { <. x , y >. | E. u e. ( ( M Sat E ) ` b ) ( E. v e. ( ( M Sat E ) ` b ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = { a e. ( M ^m _om ) | A. z e. M ( { <. i , z >. } u. ( a |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) } ) ) | 
						
							| 53 |  | rnopab |  |-  ran { <. x , y >. | E. u e. ( ( M Sat E ) ` b ) ( E. v e. ( ( M Sat E ) ` b ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = { a e. ( M ^m _om ) | A. z e. M ( { <. i , z >. } u. ( a |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) } = { y | E. x E. u e. ( ( M Sat E ) ` b ) ( E. v e. ( ( M Sat E ) ` b ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = { a e. ( M ^m _om ) | A. z e. M ( { <. i , z >. } u. ( a |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) } | 
						
							| 54 | 53 | eleq2i |  |-  ( n e. ran { <. x , y >. | E. u e. ( ( M Sat E ) ` b ) ( E. v e. ( ( M Sat E ) ` b ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = { a e. ( M ^m _om ) | A. z e. M ( { <. i , z >. } u. ( a |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) } <-> n e. { y | E. x E. u e. ( ( M Sat E ) ` b ) ( E. v e. ( ( M Sat E ) ` b ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = { a e. ( M ^m _om ) | A. z e. M ( { <. i , z >. } u. ( a |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) } ) | 
						
							| 55 |  | eqeq1 |  |-  ( y = n -> ( y = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) <-> n = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) ) | 
						
							| 56 | 55 | anbi2d |  |-  ( y = n -> ( ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) <-> ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ n = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) ) ) | 
						
							| 57 | 56 | rexbidv |  |-  ( y = n -> ( E. v e. ( ( M Sat E ) ` b ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) <-> E. v e. ( ( M Sat E ) ` b ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ n = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) ) ) | 
						
							| 58 |  | eqeq1 |  |-  ( y = n -> ( y = { a e. ( M ^m _om ) | A. z e. M ( { <. i , z >. } u. ( a |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } <-> n = { a e. ( M ^m _om ) | A. z e. M ( { <. i , z >. } u. ( a |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) | 
						
							| 59 | 58 | anbi2d |  |-  ( y = n -> ( ( x = A.g i ( 1st ` u ) /\ y = { a e. ( M ^m _om ) | A. z e. M ( { <. i , z >. } u. ( a |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) <-> ( x = A.g i ( 1st ` u ) /\ n = { a e. ( M ^m _om ) | A. z e. M ( { <. i , z >. } u. ( a |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) ) | 
						
							| 60 | 59 | rexbidv |  |-  ( y = n -> ( E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = { a e. ( M ^m _om ) | A. z e. M ( { <. i , z >. } u. ( a |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) <-> E. i e. _om ( x = A.g i ( 1st ` u ) /\ n = { a e. ( M ^m _om ) | A. z e. M ( { <. i , z >. } u. ( a |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) ) | 
						
							| 61 | 57 60 | orbi12d |  |-  ( y = n -> ( ( E. v e. ( ( M Sat E ) ` b ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = { a e. ( M ^m _om ) | A. z e. M ( { <. i , z >. } u. ( a |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) <-> ( E. v e. ( ( M Sat E ) ` b ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ n = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ n = { a e. ( M ^m _om ) | A. z e. M ( { <. i , z >. } u. ( a |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) ) ) | 
						
							| 62 | 61 | rexbidv |  |-  ( y = n -> ( E. u e. ( ( M Sat E ) ` b ) ( E. v e. ( ( M Sat E ) ` b ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = { a e. ( M ^m _om ) | A. z e. M ( { <. i , z >. } u. ( a |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) <-> E. u e. ( ( M Sat E ) ` b ) ( E. v e. ( ( M Sat E ) ` b ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ n = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ n = { a e. ( M ^m _om ) | A. z e. M ( { <. i , z >. } u. ( a |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) ) ) | 
						
							| 63 | 62 | exbidv |  |-  ( y = n -> ( E. x E. u e. ( ( M Sat E ) ` b ) ( E. v e. ( ( M Sat E ) ` b ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = { a e. ( M ^m _om ) | A. z e. M ( { <. i , z >. } u. ( a |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) <-> E. x E. u e. ( ( M Sat E ) ` b ) ( E. v e. ( ( M Sat E ) ` b ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ n = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ n = { a e. ( M ^m _om ) | A. z e. M ( { <. i , z >. } u. ( a |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) ) ) | 
						
							| 64 | 27 63 | elab |  |-  ( n e. { y | E. x E. u e. ( ( M Sat E ) ` b ) ( E. v e. ( ( M Sat E ) ` b ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = { a e. ( M ^m _om ) | A. z e. M ( { <. i , z >. } u. ( a |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) } <-> E. x E. u e. ( ( M Sat E ) ` b ) ( E. v e. ( ( M Sat E ) ` b ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ n = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ n = { a e. ( M ^m _om ) | A. z e. M ( { <. i , z >. } u. ( a |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) ) | 
						
							| 65 | 54 64 | bitri |  |-  ( n e. ran { <. x , y >. | E. u e. ( ( M Sat E ) ` b ) ( E. v e. ( ( M Sat E ) ` b ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = { a e. ( M ^m _om ) | A. z e. M ( { <. i , z >. } u. ( a |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) } <-> E. x E. u e. ( ( M Sat E ) ` b ) ( E. v e. ( ( M Sat E ) ` b ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ n = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ n = { a e. ( M ^m _om ) | A. z e. M ( { <. i , z >. } u. ( a |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) ) | 
						
							| 66 | 65 | orbi2i |  |-  ( ( n e. ran ( ( M Sat E ) ` b ) \/ n e. ran { <. x , y >. | E. u e. ( ( M Sat E ) ` b ) ( E. v e. ( ( M Sat E ) ` b ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = { a e. ( M ^m _om ) | A. z e. M ( { <. i , z >. } u. ( a |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) } ) <-> ( n e. ran ( ( M Sat E ) ` b ) \/ E. x E. u e. ( ( M Sat E ) ` b ) ( E. v e. ( ( M Sat E ) ` b ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ n = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ n = { a e. ( M ^m _om ) | A. z e. M ( { <. i , z >. } u. ( a |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) ) ) | 
						
							| 67 | 52 66 | bitri |  |-  ( n e. ( ran ( ( M Sat E ) ` b ) u. ran { <. x , y >. | E. u e. ( ( M Sat E ) ` b ) ( E. v e. ( ( M Sat E ) ` b ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = { a e. ( M ^m _om ) | A. z e. M ( { <. i , z >. } u. ( a |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) } ) <-> ( n e. ran ( ( M Sat E ) ` b ) \/ E. x E. u e. ( ( M Sat E ) ` b ) ( E. v e. ( ( M Sat E ) ` b ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ n = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ n = { a e. ( M ^m _om ) | A. z e. M ( { <. i , z >. } u. ( a |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) ) ) | 
						
							| 68 | 51 67 | bitrdi |  |-  ( ( ( M e. V /\ E e. W ) /\ b e. _om ) -> ( n e. ran ( ( M Sat E ) ` suc b ) <-> ( n e. ran ( ( M Sat E ) ` b ) \/ E. x E. u e. ( ( M Sat E ) ` b ) ( E. v e. ( ( M Sat E ) ` b ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ n = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ n = { a e. ( M ^m _om ) | A. z e. M ( { <. i , z >. } u. ( a |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) ) ) ) | 
						
							| 69 | 68 | expcom |  |-  ( b e. _om -> ( ( M e. V /\ E e. W ) -> ( n e. ran ( ( M Sat E ) ` suc b ) <-> ( n e. ran ( ( M Sat E ) ` b ) \/ E. x E. u e. ( ( M Sat E ) ` b ) ( E. v e. ( ( M Sat E ) ` b ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ n = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ n = { a e. ( M ^m _om ) | A. z e. M ( { <. i , z >. } u. ( a |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) ) ) ) ) | 
						
							| 70 | 69 | adantr |  |-  ( ( b e. _om /\ ( ( M e. V /\ E e. W ) -> ( n e. ran ( ( M Sat E ) ` b ) -> n e. ~P ( M ^m _om ) ) ) ) -> ( ( M e. V /\ E e. W ) -> ( n e. ran ( ( M Sat E ) ` suc b ) <-> ( n e. ran ( ( M Sat E ) ` b ) \/ E. x E. u e. ( ( M Sat E ) ` b ) ( E. v e. ( ( M Sat E ) ` b ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ n = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ n = { a e. ( M ^m _om ) | A. z e. M ( { <. i , z >. } u. ( a |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) ) ) ) ) | 
						
							| 71 | 70 | imp |  |-  ( ( ( b e. _om /\ ( ( M e. V /\ E e. W ) -> ( n e. ran ( ( M Sat E ) ` b ) -> n e. ~P ( M ^m _om ) ) ) ) /\ ( M e. V /\ E e. W ) ) -> ( n e. ran ( ( M Sat E ) ` suc b ) <-> ( n e. ran ( ( M Sat E ) ` b ) \/ E. x E. u e. ( ( M Sat E ) ` b ) ( E. v e. ( ( M Sat E ) ` b ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ n = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ n = { a e. ( M ^m _om ) | A. z e. M ( { <. i , z >. } u. ( a |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) ) ) ) | 
						
							| 72 |  | simpr |  |-  ( ( b e. _om /\ ( ( M e. V /\ E e. W ) -> ( n e. ran ( ( M Sat E ) ` b ) -> n e. ~P ( M ^m _om ) ) ) ) -> ( ( M e. V /\ E e. W ) -> ( n e. ran ( ( M Sat E ) ` b ) -> n e. ~P ( M ^m _om ) ) ) ) | 
						
							| 73 | 72 | imp |  |-  ( ( ( b e. _om /\ ( ( M e. V /\ E e. W ) -> ( n e. ran ( ( M Sat E ) ` b ) -> n e. ~P ( M ^m _om ) ) ) ) /\ ( M e. V /\ E e. W ) ) -> ( n e. ran ( ( M Sat E ) ` b ) -> n e. ~P ( M ^m _om ) ) ) | 
						
							| 74 |  | difss |  |-  ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) C_ ( M ^m _om ) | 
						
							| 75 | 33 74 | elpwi2 |  |-  ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) e. ~P ( M ^m _om ) | 
						
							| 76 |  | eleq1 |  |-  ( n = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) -> ( n e. ~P ( M ^m _om ) <-> ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) e. ~P ( M ^m _om ) ) ) | 
						
							| 77 | 75 76 | mpbiri |  |-  ( n = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) -> n e. ~P ( M ^m _om ) ) | 
						
							| 78 | 77 | adantl |  |-  ( ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ n = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) -> n e. ~P ( M ^m _om ) ) | 
						
							| 79 | 78 | adantl |  |-  ( ( v e. ( ( M Sat E ) ` b ) /\ ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ n = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) ) -> n e. ~P ( M ^m _om ) ) | 
						
							| 80 | 79 | rexlimiva |  |-  ( E. v e. ( ( M Sat E ) ` b ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ n = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) -> n e. ~P ( M ^m _om ) ) | 
						
							| 81 |  | ssrab2 |  |-  { a e. ( M ^m _om ) | A. z e. M ( { <. i , z >. } u. ( a |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } C_ ( M ^m _om ) | 
						
							| 82 | 33 81 | elpwi2 |  |-  { a e. ( M ^m _om ) | A. z e. M ( { <. i , z >. } u. ( a |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } e. ~P ( M ^m _om ) | 
						
							| 83 |  | eleq1 |  |-  ( n = { a e. ( M ^m _om ) | A. z e. M ( { <. i , z >. } u. ( a |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } -> ( n e. ~P ( M ^m _om ) <-> { a e. ( M ^m _om ) | A. z e. M ( { <. i , z >. } u. ( a |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } e. ~P ( M ^m _om ) ) ) | 
						
							| 84 | 82 83 | mpbiri |  |-  ( n = { a e. ( M ^m _om ) | A. z e. M ( { <. i , z >. } u. ( a |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } -> n e. ~P ( M ^m _om ) ) | 
						
							| 85 | 84 | adantl |  |-  ( ( x = A.g i ( 1st ` u ) /\ n = { a e. ( M ^m _om ) | A. z e. M ( { <. i , z >. } u. ( a |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) -> n e. ~P ( M ^m _om ) ) | 
						
							| 86 | 85 | a1i |  |-  ( i e. _om -> ( ( x = A.g i ( 1st ` u ) /\ n = { a e. ( M ^m _om ) | A. z e. M ( { <. i , z >. } u. ( a |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) -> n e. ~P ( M ^m _om ) ) ) | 
						
							| 87 | 86 | rexlimiv |  |-  ( E. i e. _om ( x = A.g i ( 1st ` u ) /\ n = { a e. ( M ^m _om ) | A. z e. M ( { <. i , z >. } u. ( a |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) -> n e. ~P ( M ^m _om ) ) | 
						
							| 88 | 80 87 | jaoi |  |-  ( ( E. v e. ( ( M Sat E ) ` b ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ n = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ n = { a e. ( M ^m _om ) | A. z e. M ( { <. i , z >. } u. ( a |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) -> n e. ~P ( M ^m _om ) ) | 
						
							| 89 | 88 | a1i |  |-  ( u e. ( ( M Sat E ) ` b ) -> ( ( E. v e. ( ( M Sat E ) ` b ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ n = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ n = { a e. ( M ^m _om ) | A. z e. M ( { <. i , z >. } u. ( a |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) -> n e. ~P ( M ^m _om ) ) ) | 
						
							| 90 | 89 | rexlimiv |  |-  ( E. u e. ( ( M Sat E ) ` b ) ( E. v e. ( ( M Sat E ) ` b ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ n = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ n = { a e. ( M ^m _om ) | A. z e. M ( { <. i , z >. } u. ( a |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) -> n e. ~P ( M ^m _om ) ) | 
						
							| 91 | 90 | exlimiv |  |-  ( E. x E. u e. ( ( M Sat E ) ` b ) ( E. v e. ( ( M Sat E ) ` b ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ n = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ n = { a e. ( M ^m _om ) | A. z e. M ( { <. i , z >. } u. ( a |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) -> n e. ~P ( M ^m _om ) ) | 
						
							| 92 | 91 | a1i |  |-  ( ( ( b e. _om /\ ( ( M e. V /\ E e. W ) -> ( n e. ran ( ( M Sat E ) ` b ) -> n e. ~P ( M ^m _om ) ) ) ) /\ ( M e. V /\ E e. W ) ) -> ( E. x E. u e. ( ( M Sat E ) ` b ) ( E. v e. ( ( M Sat E ) ` b ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ n = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ n = { a e. ( M ^m _om ) | A. z e. M ( { <. i , z >. } u. ( a |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) -> n e. ~P ( M ^m _om ) ) ) | 
						
							| 93 | 73 92 | jaod |  |-  ( ( ( b e. _om /\ ( ( M e. V /\ E e. W ) -> ( n e. ran ( ( M Sat E ) ` b ) -> n e. ~P ( M ^m _om ) ) ) ) /\ ( M e. V /\ E e. W ) ) -> ( ( n e. ran ( ( M Sat E ) ` b ) \/ E. x E. u e. ( ( M Sat E ) ` b ) ( E. v e. ( ( M Sat E ) ` b ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ n = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ n = { a e. ( M ^m _om ) | A. z e. M ( { <. i , z >. } u. ( a |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) ) -> n e. ~P ( M ^m _om ) ) ) | 
						
							| 94 | 71 93 | sylbid |  |-  ( ( ( b e. _om /\ ( ( M e. V /\ E e. W ) -> ( n e. ran ( ( M Sat E ) ` b ) -> n e. ~P ( M ^m _om ) ) ) ) /\ ( M e. V /\ E e. W ) ) -> ( n e. ran ( ( M Sat E ) ` suc b ) -> n e. ~P ( M ^m _om ) ) ) | 
						
							| 95 | 94 | exp31 |  |-  ( b e. _om -> ( ( ( M e. V /\ E e. W ) -> ( n e. ran ( ( M Sat E ) ` b ) -> n e. ~P ( M ^m _om ) ) ) -> ( ( M e. V /\ E e. W ) -> ( n e. ran ( ( M Sat E ) ` suc b ) -> n e. ~P ( M ^m _om ) ) ) ) ) | 
						
							| 96 | 5 10 15 20 45 95 | finds |  |-  ( N e. _om -> ( ( M e. V /\ E e. W ) -> ( n e. ran ( ( M Sat E ) ` N ) -> n e. ~P ( M ^m _om ) ) ) ) | 
						
							| 97 | 96 | com12 |  |-  ( ( M e. V /\ E e. W ) -> ( N e. _om -> ( n e. ran ( ( M Sat E ) ` N ) -> n e. ~P ( M ^m _om ) ) ) ) | 
						
							| 98 | 97 | 3impia |  |-  ( ( M e. V /\ E e. W /\ N e. _om ) -> ( n e. ran ( ( M Sat E ) ` N ) -> n e. ~P ( M ^m _om ) ) ) | 
						
							| 99 | 98 | ssrdv |  |-  ( ( M e. V /\ E e. W /\ N e. _om ) -> ran ( ( M Sat E ) ` N ) C_ ~P ( M ^m _om ) ) |