Metamath Proof Explorer


Theorem satfrnmapom

Description: The range of the satisfaction predicate as function over wff codes in any model M and any binary relation E on M for a natural number N is a subset of the power set of all mappings from the natural numbers into the model M . (Contributed by AV, 13-Oct-2023)

Ref Expression
Assertion satfrnmapom ( ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ π‘Š ∧ 𝑁 ∈ Ο‰ ) β†’ ran ( ( 𝑀 Sat 𝐸 ) β€˜ 𝑁 ) βŠ† 𝒫 ( 𝑀 ↑m Ο‰ ) )

Proof

Step Hyp Ref Expression
1 fveq2 ⊒ ( π‘Ž = βˆ… β†’ ( ( 𝑀 Sat 𝐸 ) β€˜ π‘Ž ) = ( ( 𝑀 Sat 𝐸 ) β€˜ βˆ… ) )
2 1 rneqd ⊒ ( π‘Ž = βˆ… β†’ ran ( ( 𝑀 Sat 𝐸 ) β€˜ π‘Ž ) = ran ( ( 𝑀 Sat 𝐸 ) β€˜ βˆ… ) )
3 2 eleq2d ⊒ ( π‘Ž = βˆ… β†’ ( 𝑛 ∈ ran ( ( 𝑀 Sat 𝐸 ) β€˜ π‘Ž ) ↔ 𝑛 ∈ ran ( ( 𝑀 Sat 𝐸 ) β€˜ βˆ… ) ) )
4 3 imbi1d ⊒ ( π‘Ž = βˆ… β†’ ( ( 𝑛 ∈ ran ( ( 𝑀 Sat 𝐸 ) β€˜ π‘Ž ) β†’ 𝑛 ∈ 𝒫 ( 𝑀 ↑m Ο‰ ) ) ↔ ( 𝑛 ∈ ran ( ( 𝑀 Sat 𝐸 ) β€˜ βˆ… ) β†’ 𝑛 ∈ 𝒫 ( 𝑀 ↑m Ο‰ ) ) ) )
5 4 imbi2d ⊒ ( π‘Ž = βˆ… β†’ ( ( ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ π‘Š ) β†’ ( 𝑛 ∈ ran ( ( 𝑀 Sat 𝐸 ) β€˜ π‘Ž ) β†’ 𝑛 ∈ 𝒫 ( 𝑀 ↑m Ο‰ ) ) ) ↔ ( ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ π‘Š ) β†’ ( 𝑛 ∈ ran ( ( 𝑀 Sat 𝐸 ) β€˜ βˆ… ) β†’ 𝑛 ∈ 𝒫 ( 𝑀 ↑m Ο‰ ) ) ) ) )
6 fveq2 ⊒ ( π‘Ž = 𝑏 β†’ ( ( 𝑀 Sat 𝐸 ) β€˜ π‘Ž ) = ( ( 𝑀 Sat 𝐸 ) β€˜ 𝑏 ) )
7 6 rneqd ⊒ ( π‘Ž = 𝑏 β†’ ran ( ( 𝑀 Sat 𝐸 ) β€˜ π‘Ž ) = ran ( ( 𝑀 Sat 𝐸 ) β€˜ 𝑏 ) )
8 7 eleq2d ⊒ ( π‘Ž = 𝑏 β†’ ( 𝑛 ∈ ran ( ( 𝑀 Sat 𝐸 ) β€˜ π‘Ž ) ↔ 𝑛 ∈ ran ( ( 𝑀 Sat 𝐸 ) β€˜ 𝑏 ) ) )
9 8 imbi1d ⊒ ( π‘Ž = 𝑏 β†’ ( ( 𝑛 ∈ ran ( ( 𝑀 Sat 𝐸 ) β€˜ π‘Ž ) β†’ 𝑛 ∈ 𝒫 ( 𝑀 ↑m Ο‰ ) ) ↔ ( 𝑛 ∈ ran ( ( 𝑀 Sat 𝐸 ) β€˜ 𝑏 ) β†’ 𝑛 ∈ 𝒫 ( 𝑀 ↑m Ο‰ ) ) ) )
10 9 imbi2d ⊒ ( π‘Ž = 𝑏 β†’ ( ( ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ π‘Š ) β†’ ( 𝑛 ∈ ran ( ( 𝑀 Sat 𝐸 ) β€˜ π‘Ž ) β†’ 𝑛 ∈ 𝒫 ( 𝑀 ↑m Ο‰ ) ) ) ↔ ( ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ π‘Š ) β†’ ( 𝑛 ∈ ran ( ( 𝑀 Sat 𝐸 ) β€˜ 𝑏 ) β†’ 𝑛 ∈ 𝒫 ( 𝑀 ↑m Ο‰ ) ) ) ) )
11 fveq2 ⊒ ( π‘Ž = suc 𝑏 β†’ ( ( 𝑀 Sat 𝐸 ) β€˜ π‘Ž ) = ( ( 𝑀 Sat 𝐸 ) β€˜ suc 𝑏 ) )
12 11 rneqd ⊒ ( π‘Ž = suc 𝑏 β†’ ran ( ( 𝑀 Sat 𝐸 ) β€˜ π‘Ž ) = ran ( ( 𝑀 Sat 𝐸 ) β€˜ suc 𝑏 ) )
13 12 eleq2d ⊒ ( π‘Ž = suc 𝑏 β†’ ( 𝑛 ∈ ran ( ( 𝑀 Sat 𝐸 ) β€˜ π‘Ž ) ↔ 𝑛 ∈ ran ( ( 𝑀 Sat 𝐸 ) β€˜ suc 𝑏 ) ) )
14 13 imbi1d ⊒ ( π‘Ž = suc 𝑏 β†’ ( ( 𝑛 ∈ ran ( ( 𝑀 Sat 𝐸 ) β€˜ π‘Ž ) β†’ 𝑛 ∈ 𝒫 ( 𝑀 ↑m Ο‰ ) ) ↔ ( 𝑛 ∈ ran ( ( 𝑀 Sat 𝐸 ) β€˜ suc 𝑏 ) β†’ 𝑛 ∈ 𝒫 ( 𝑀 ↑m Ο‰ ) ) ) )
15 14 imbi2d ⊒ ( π‘Ž = suc 𝑏 β†’ ( ( ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ π‘Š ) β†’ ( 𝑛 ∈ ran ( ( 𝑀 Sat 𝐸 ) β€˜ π‘Ž ) β†’ 𝑛 ∈ 𝒫 ( 𝑀 ↑m Ο‰ ) ) ) ↔ ( ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ π‘Š ) β†’ ( 𝑛 ∈ ran ( ( 𝑀 Sat 𝐸 ) β€˜ suc 𝑏 ) β†’ 𝑛 ∈ 𝒫 ( 𝑀 ↑m Ο‰ ) ) ) ) )
16 fveq2 ⊒ ( π‘Ž = 𝑁 β†’ ( ( 𝑀 Sat 𝐸 ) β€˜ π‘Ž ) = ( ( 𝑀 Sat 𝐸 ) β€˜ 𝑁 ) )
17 16 rneqd ⊒ ( π‘Ž = 𝑁 β†’ ran ( ( 𝑀 Sat 𝐸 ) β€˜ π‘Ž ) = ran ( ( 𝑀 Sat 𝐸 ) β€˜ 𝑁 ) )
18 17 eleq2d ⊒ ( π‘Ž = 𝑁 β†’ ( 𝑛 ∈ ran ( ( 𝑀 Sat 𝐸 ) β€˜ π‘Ž ) ↔ 𝑛 ∈ ran ( ( 𝑀 Sat 𝐸 ) β€˜ 𝑁 ) ) )
19 18 imbi1d ⊒ ( π‘Ž = 𝑁 β†’ ( ( 𝑛 ∈ ran ( ( 𝑀 Sat 𝐸 ) β€˜ π‘Ž ) β†’ 𝑛 ∈ 𝒫 ( 𝑀 ↑m Ο‰ ) ) ↔ ( 𝑛 ∈ ran ( ( 𝑀 Sat 𝐸 ) β€˜ 𝑁 ) β†’ 𝑛 ∈ 𝒫 ( 𝑀 ↑m Ο‰ ) ) ) )
20 19 imbi2d ⊒ ( π‘Ž = 𝑁 β†’ ( ( ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ π‘Š ) β†’ ( 𝑛 ∈ ran ( ( 𝑀 Sat 𝐸 ) β€˜ π‘Ž ) β†’ 𝑛 ∈ 𝒫 ( 𝑀 ↑m Ο‰ ) ) ) ↔ ( ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ π‘Š ) β†’ ( 𝑛 ∈ ran ( ( 𝑀 Sat 𝐸 ) β€˜ 𝑁 ) β†’ 𝑛 ∈ 𝒫 ( 𝑀 ↑m Ο‰ ) ) ) ) )
21 eqid ⊒ ( 𝑀 Sat 𝐸 ) = ( 𝑀 Sat 𝐸 )
22 21 satfv0 ⊒ ( ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ π‘Š ) β†’ ( ( 𝑀 Sat 𝐸 ) β€˜ βˆ… ) = { ⟨ π‘₯ , 𝑦 ⟩ ∣ βˆƒ 𝑖 ∈ Ο‰ βˆƒ 𝑗 ∈ Ο‰ ( π‘₯ = ( 𝑖 βˆˆπ‘” 𝑗 ) ∧ 𝑦 = { 𝑓 ∈ ( 𝑀 ↑m Ο‰ ) ∣ ( 𝑓 β€˜ 𝑖 ) 𝐸 ( 𝑓 β€˜ 𝑗 ) } ) } )
23 22 rneqd ⊒ ( ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ π‘Š ) β†’ ran ( ( 𝑀 Sat 𝐸 ) β€˜ βˆ… ) = ran { ⟨ π‘₯ , 𝑦 ⟩ ∣ βˆƒ 𝑖 ∈ Ο‰ βˆƒ 𝑗 ∈ Ο‰ ( π‘₯ = ( 𝑖 βˆˆπ‘” 𝑗 ) ∧ 𝑦 = { 𝑓 ∈ ( 𝑀 ↑m Ο‰ ) ∣ ( 𝑓 β€˜ 𝑖 ) 𝐸 ( 𝑓 β€˜ 𝑗 ) } ) } )
24 23 eleq2d ⊒ ( ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ π‘Š ) β†’ ( 𝑛 ∈ ran ( ( 𝑀 Sat 𝐸 ) β€˜ βˆ… ) ↔ 𝑛 ∈ ran { ⟨ π‘₯ , 𝑦 ⟩ ∣ βˆƒ 𝑖 ∈ Ο‰ βˆƒ 𝑗 ∈ Ο‰ ( π‘₯ = ( 𝑖 βˆˆπ‘” 𝑗 ) ∧ 𝑦 = { 𝑓 ∈ ( 𝑀 ↑m Ο‰ ) ∣ ( 𝑓 β€˜ 𝑖 ) 𝐸 ( 𝑓 β€˜ 𝑗 ) } ) } ) )
25 rnopab ⊒ ran { ⟨ π‘₯ , 𝑦 ⟩ ∣ βˆƒ 𝑖 ∈ Ο‰ βˆƒ 𝑗 ∈ Ο‰ ( π‘₯ = ( 𝑖 βˆˆπ‘” 𝑗 ) ∧ 𝑦 = { 𝑓 ∈ ( 𝑀 ↑m Ο‰ ) ∣ ( 𝑓 β€˜ 𝑖 ) 𝐸 ( 𝑓 β€˜ 𝑗 ) } ) } = { 𝑦 ∣ βˆƒ π‘₯ βˆƒ 𝑖 ∈ Ο‰ βˆƒ 𝑗 ∈ Ο‰ ( π‘₯ = ( 𝑖 βˆˆπ‘” 𝑗 ) ∧ 𝑦 = { 𝑓 ∈ ( 𝑀 ↑m Ο‰ ) ∣ ( 𝑓 β€˜ 𝑖 ) 𝐸 ( 𝑓 β€˜ 𝑗 ) } ) }
26 25 eleq2i ⊒ ( 𝑛 ∈ ran { ⟨ π‘₯ , 𝑦 ⟩ ∣ βˆƒ 𝑖 ∈ Ο‰ βˆƒ 𝑗 ∈ Ο‰ ( π‘₯ = ( 𝑖 βˆˆπ‘” 𝑗 ) ∧ 𝑦 = { 𝑓 ∈ ( 𝑀 ↑m Ο‰ ) ∣ ( 𝑓 β€˜ 𝑖 ) 𝐸 ( 𝑓 β€˜ 𝑗 ) } ) } ↔ 𝑛 ∈ { 𝑦 ∣ βˆƒ π‘₯ βˆƒ 𝑖 ∈ Ο‰ βˆƒ 𝑗 ∈ Ο‰ ( π‘₯ = ( 𝑖 βˆˆπ‘” 𝑗 ) ∧ 𝑦 = { 𝑓 ∈ ( 𝑀 ↑m Ο‰ ) ∣ ( 𝑓 β€˜ 𝑖 ) 𝐸 ( 𝑓 β€˜ 𝑗 ) } ) } )
27 vex ⊒ 𝑛 ∈ V
28 eqeq1 ⊒ ( 𝑦 = 𝑛 β†’ ( 𝑦 = { 𝑓 ∈ ( 𝑀 ↑m Ο‰ ) ∣ ( 𝑓 β€˜ 𝑖 ) 𝐸 ( 𝑓 β€˜ 𝑗 ) } ↔ 𝑛 = { 𝑓 ∈ ( 𝑀 ↑m Ο‰ ) ∣ ( 𝑓 β€˜ 𝑖 ) 𝐸 ( 𝑓 β€˜ 𝑗 ) } ) )
29 28 anbi2d ⊒ ( 𝑦 = 𝑛 β†’ ( ( π‘₯ = ( 𝑖 βˆˆπ‘” 𝑗 ) ∧ 𝑦 = { 𝑓 ∈ ( 𝑀 ↑m Ο‰ ) ∣ ( 𝑓 β€˜ 𝑖 ) 𝐸 ( 𝑓 β€˜ 𝑗 ) } ) ↔ ( π‘₯ = ( 𝑖 βˆˆπ‘” 𝑗 ) ∧ 𝑛 = { 𝑓 ∈ ( 𝑀 ↑m Ο‰ ) ∣ ( 𝑓 β€˜ 𝑖 ) 𝐸 ( 𝑓 β€˜ 𝑗 ) } ) ) )
30 29 2rexbidv ⊒ ( 𝑦 = 𝑛 β†’ ( βˆƒ 𝑖 ∈ Ο‰ βˆƒ 𝑗 ∈ Ο‰ ( π‘₯ = ( 𝑖 βˆˆπ‘” 𝑗 ) ∧ 𝑦 = { 𝑓 ∈ ( 𝑀 ↑m Ο‰ ) ∣ ( 𝑓 β€˜ 𝑖 ) 𝐸 ( 𝑓 β€˜ 𝑗 ) } ) ↔ βˆƒ 𝑖 ∈ Ο‰ βˆƒ 𝑗 ∈ Ο‰ ( π‘₯ = ( 𝑖 βˆˆπ‘” 𝑗 ) ∧ 𝑛 = { 𝑓 ∈ ( 𝑀 ↑m Ο‰ ) ∣ ( 𝑓 β€˜ 𝑖 ) 𝐸 ( 𝑓 β€˜ 𝑗 ) } ) ) )
31 30 exbidv ⊒ ( 𝑦 = 𝑛 β†’ ( βˆƒ π‘₯ βˆƒ 𝑖 ∈ Ο‰ βˆƒ 𝑗 ∈ Ο‰ ( π‘₯ = ( 𝑖 βˆˆπ‘” 𝑗 ) ∧ 𝑦 = { 𝑓 ∈ ( 𝑀 ↑m Ο‰ ) ∣ ( 𝑓 β€˜ 𝑖 ) 𝐸 ( 𝑓 β€˜ 𝑗 ) } ) ↔ βˆƒ π‘₯ βˆƒ 𝑖 ∈ Ο‰ βˆƒ 𝑗 ∈ Ο‰ ( π‘₯ = ( 𝑖 βˆˆπ‘” 𝑗 ) ∧ 𝑛 = { 𝑓 ∈ ( 𝑀 ↑m Ο‰ ) ∣ ( 𝑓 β€˜ 𝑖 ) 𝐸 ( 𝑓 β€˜ 𝑗 ) } ) ) )
32 27 31 elab ⊒ ( 𝑛 ∈ { 𝑦 ∣ βˆƒ π‘₯ βˆƒ 𝑖 ∈ Ο‰ βˆƒ 𝑗 ∈ Ο‰ ( π‘₯ = ( 𝑖 βˆˆπ‘” 𝑗 ) ∧ 𝑦 = { 𝑓 ∈ ( 𝑀 ↑m Ο‰ ) ∣ ( 𝑓 β€˜ 𝑖 ) 𝐸 ( 𝑓 β€˜ 𝑗 ) } ) } ↔ βˆƒ π‘₯ βˆƒ 𝑖 ∈ Ο‰ βˆƒ 𝑗 ∈ Ο‰ ( π‘₯ = ( 𝑖 βˆˆπ‘” 𝑗 ) ∧ 𝑛 = { 𝑓 ∈ ( 𝑀 ↑m Ο‰ ) ∣ ( 𝑓 β€˜ 𝑖 ) 𝐸 ( 𝑓 β€˜ 𝑗 ) } ) )
33 ovex ⊒ ( 𝑀 ↑m Ο‰ ) ∈ V
34 ssrab2 ⊒ { 𝑓 ∈ ( 𝑀 ↑m Ο‰ ) ∣ ( 𝑓 β€˜ 𝑖 ) 𝐸 ( 𝑓 β€˜ 𝑗 ) } βŠ† ( 𝑀 ↑m Ο‰ )
35 33 34 elpwi2 ⊒ { 𝑓 ∈ ( 𝑀 ↑m Ο‰ ) ∣ ( 𝑓 β€˜ 𝑖 ) 𝐸 ( 𝑓 β€˜ 𝑗 ) } ∈ 𝒫 ( 𝑀 ↑m Ο‰ )
36 eleq1 ⊒ ( 𝑛 = { 𝑓 ∈ ( 𝑀 ↑m Ο‰ ) ∣ ( 𝑓 β€˜ 𝑖 ) 𝐸 ( 𝑓 β€˜ 𝑗 ) } β†’ ( 𝑛 ∈ 𝒫 ( 𝑀 ↑m Ο‰ ) ↔ { 𝑓 ∈ ( 𝑀 ↑m Ο‰ ) ∣ ( 𝑓 β€˜ 𝑖 ) 𝐸 ( 𝑓 β€˜ 𝑗 ) } ∈ 𝒫 ( 𝑀 ↑m Ο‰ ) ) )
37 35 36 mpbiri ⊒ ( 𝑛 = { 𝑓 ∈ ( 𝑀 ↑m Ο‰ ) ∣ ( 𝑓 β€˜ 𝑖 ) 𝐸 ( 𝑓 β€˜ 𝑗 ) } β†’ 𝑛 ∈ 𝒫 ( 𝑀 ↑m Ο‰ ) )
38 37 adantl ⊒ ( ( π‘₯ = ( 𝑖 βˆˆπ‘” 𝑗 ) ∧ 𝑛 = { 𝑓 ∈ ( 𝑀 ↑m Ο‰ ) ∣ ( 𝑓 β€˜ 𝑖 ) 𝐸 ( 𝑓 β€˜ 𝑗 ) } ) β†’ 𝑛 ∈ 𝒫 ( 𝑀 ↑m Ο‰ ) )
39 38 a1i ⊒ ( ( 𝑖 ∈ Ο‰ ∧ 𝑗 ∈ Ο‰ ) β†’ ( ( π‘₯ = ( 𝑖 βˆˆπ‘” 𝑗 ) ∧ 𝑛 = { 𝑓 ∈ ( 𝑀 ↑m Ο‰ ) ∣ ( 𝑓 β€˜ 𝑖 ) 𝐸 ( 𝑓 β€˜ 𝑗 ) } ) β†’ 𝑛 ∈ 𝒫 ( 𝑀 ↑m Ο‰ ) ) )
40 39 rexlimivv ⊒ ( βˆƒ 𝑖 ∈ Ο‰ βˆƒ 𝑗 ∈ Ο‰ ( π‘₯ = ( 𝑖 βˆˆπ‘” 𝑗 ) ∧ 𝑛 = { 𝑓 ∈ ( 𝑀 ↑m Ο‰ ) ∣ ( 𝑓 β€˜ 𝑖 ) 𝐸 ( 𝑓 β€˜ 𝑗 ) } ) β†’ 𝑛 ∈ 𝒫 ( 𝑀 ↑m Ο‰ ) )
41 40 exlimiv ⊒ ( βˆƒ π‘₯ βˆƒ 𝑖 ∈ Ο‰ βˆƒ 𝑗 ∈ Ο‰ ( π‘₯ = ( 𝑖 βˆˆπ‘” 𝑗 ) ∧ 𝑛 = { 𝑓 ∈ ( 𝑀 ↑m Ο‰ ) ∣ ( 𝑓 β€˜ 𝑖 ) 𝐸 ( 𝑓 β€˜ 𝑗 ) } ) β†’ 𝑛 ∈ 𝒫 ( 𝑀 ↑m Ο‰ ) )
42 32 41 sylbi ⊒ ( 𝑛 ∈ { 𝑦 ∣ βˆƒ π‘₯ βˆƒ 𝑖 ∈ Ο‰ βˆƒ 𝑗 ∈ Ο‰ ( π‘₯ = ( 𝑖 βˆˆπ‘” 𝑗 ) ∧ 𝑦 = { 𝑓 ∈ ( 𝑀 ↑m Ο‰ ) ∣ ( 𝑓 β€˜ 𝑖 ) 𝐸 ( 𝑓 β€˜ 𝑗 ) } ) } β†’ 𝑛 ∈ 𝒫 ( 𝑀 ↑m Ο‰ ) )
43 42 a1i ⊒ ( ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ π‘Š ) β†’ ( 𝑛 ∈ { 𝑦 ∣ βˆƒ π‘₯ βˆƒ 𝑖 ∈ Ο‰ βˆƒ 𝑗 ∈ Ο‰ ( π‘₯ = ( 𝑖 βˆˆπ‘” 𝑗 ) ∧ 𝑦 = { 𝑓 ∈ ( 𝑀 ↑m Ο‰ ) ∣ ( 𝑓 β€˜ 𝑖 ) 𝐸 ( 𝑓 β€˜ 𝑗 ) } ) } β†’ 𝑛 ∈ 𝒫 ( 𝑀 ↑m Ο‰ ) ) )
44 26 43 biimtrid ⊒ ( ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ π‘Š ) β†’ ( 𝑛 ∈ ran { ⟨ π‘₯ , 𝑦 ⟩ ∣ βˆƒ 𝑖 ∈ Ο‰ βˆƒ 𝑗 ∈ Ο‰ ( π‘₯ = ( 𝑖 βˆˆπ‘” 𝑗 ) ∧ 𝑦 = { 𝑓 ∈ ( 𝑀 ↑m Ο‰ ) ∣ ( 𝑓 β€˜ 𝑖 ) 𝐸 ( 𝑓 β€˜ 𝑗 ) } ) } β†’ 𝑛 ∈ 𝒫 ( 𝑀 ↑m Ο‰ ) ) )
45 24 44 sylbid ⊒ ( ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ π‘Š ) β†’ ( 𝑛 ∈ ran ( ( 𝑀 Sat 𝐸 ) β€˜ βˆ… ) β†’ 𝑛 ∈ 𝒫 ( 𝑀 ↑m Ο‰ ) ) )
46 21 satfvsuc ⊒ ( ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ π‘Š ∧ 𝑏 ∈ Ο‰ ) β†’ ( ( 𝑀 Sat 𝐸 ) β€˜ suc 𝑏 ) = ( ( ( 𝑀 Sat 𝐸 ) β€˜ 𝑏 ) βˆͺ { ⟨ π‘₯ , 𝑦 ⟩ ∣ βˆƒ 𝑒 ∈ ( ( 𝑀 Sat 𝐸 ) β€˜ 𝑏 ) ( βˆƒ 𝑣 ∈ ( ( 𝑀 Sat 𝐸 ) β€˜ 𝑏 ) ( π‘₯ = ( ( 1st β€˜ 𝑒 ) βŠΌπ‘” ( 1st β€˜ 𝑣 ) ) ∧ 𝑦 = ( ( 𝑀 ↑m Ο‰ ) βˆ– ( ( 2nd β€˜ 𝑒 ) ∩ ( 2nd β€˜ 𝑣 ) ) ) ) ∨ βˆƒ 𝑖 ∈ Ο‰ ( π‘₯ = βˆ€π‘” 𝑖 ( 1st β€˜ 𝑒 ) ∧ 𝑦 = { π‘Ž ∈ ( 𝑀 ↑m Ο‰ ) ∣ βˆ€ 𝑧 ∈ 𝑀 ( { ⟨ 𝑖 , 𝑧 ⟩ } βˆͺ ( π‘Ž β†Ύ ( Ο‰ βˆ– { 𝑖 } ) ) ) ∈ ( 2nd β€˜ 𝑒 ) } ) ) } ) )
47 46 3expa ⊒ ( ( ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ π‘Š ) ∧ 𝑏 ∈ Ο‰ ) β†’ ( ( 𝑀 Sat 𝐸 ) β€˜ suc 𝑏 ) = ( ( ( 𝑀 Sat 𝐸 ) β€˜ 𝑏 ) βˆͺ { ⟨ π‘₯ , 𝑦 ⟩ ∣ βˆƒ 𝑒 ∈ ( ( 𝑀 Sat 𝐸 ) β€˜ 𝑏 ) ( βˆƒ 𝑣 ∈ ( ( 𝑀 Sat 𝐸 ) β€˜ 𝑏 ) ( π‘₯ = ( ( 1st β€˜ 𝑒 ) βŠΌπ‘” ( 1st β€˜ 𝑣 ) ) ∧ 𝑦 = ( ( 𝑀 ↑m Ο‰ ) βˆ– ( ( 2nd β€˜ 𝑒 ) ∩ ( 2nd β€˜ 𝑣 ) ) ) ) ∨ βˆƒ 𝑖 ∈ Ο‰ ( π‘₯ = βˆ€π‘” 𝑖 ( 1st β€˜ 𝑒 ) ∧ 𝑦 = { π‘Ž ∈ ( 𝑀 ↑m Ο‰ ) ∣ βˆ€ 𝑧 ∈ 𝑀 ( { ⟨ 𝑖 , 𝑧 ⟩ } βˆͺ ( π‘Ž β†Ύ ( Ο‰ βˆ– { 𝑖 } ) ) ) ∈ ( 2nd β€˜ 𝑒 ) } ) ) } ) )
48 47 rneqd ⊒ ( ( ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ π‘Š ) ∧ 𝑏 ∈ Ο‰ ) β†’ ran ( ( 𝑀 Sat 𝐸 ) β€˜ suc 𝑏 ) = ran ( ( ( 𝑀 Sat 𝐸 ) β€˜ 𝑏 ) βˆͺ { ⟨ π‘₯ , 𝑦 ⟩ ∣ βˆƒ 𝑒 ∈ ( ( 𝑀 Sat 𝐸 ) β€˜ 𝑏 ) ( βˆƒ 𝑣 ∈ ( ( 𝑀 Sat 𝐸 ) β€˜ 𝑏 ) ( π‘₯ = ( ( 1st β€˜ 𝑒 ) βŠΌπ‘” ( 1st β€˜ 𝑣 ) ) ∧ 𝑦 = ( ( 𝑀 ↑m Ο‰ ) βˆ– ( ( 2nd β€˜ 𝑒 ) ∩ ( 2nd β€˜ 𝑣 ) ) ) ) ∨ βˆƒ 𝑖 ∈ Ο‰ ( π‘₯ = βˆ€π‘” 𝑖 ( 1st β€˜ 𝑒 ) ∧ 𝑦 = { π‘Ž ∈ ( 𝑀 ↑m Ο‰ ) ∣ βˆ€ 𝑧 ∈ 𝑀 ( { ⟨ 𝑖 , 𝑧 ⟩ } βˆͺ ( π‘Ž β†Ύ ( Ο‰ βˆ– { 𝑖 } ) ) ) ∈ ( 2nd β€˜ 𝑒 ) } ) ) } ) )
49 rnun ⊒ ran ( ( ( 𝑀 Sat 𝐸 ) β€˜ 𝑏 ) βˆͺ { ⟨ π‘₯ , 𝑦 ⟩ ∣ βˆƒ 𝑒 ∈ ( ( 𝑀 Sat 𝐸 ) β€˜ 𝑏 ) ( βˆƒ 𝑣 ∈ ( ( 𝑀 Sat 𝐸 ) β€˜ 𝑏 ) ( π‘₯ = ( ( 1st β€˜ 𝑒 ) βŠΌπ‘” ( 1st β€˜ 𝑣 ) ) ∧ 𝑦 = ( ( 𝑀 ↑m Ο‰ ) βˆ– ( ( 2nd β€˜ 𝑒 ) ∩ ( 2nd β€˜ 𝑣 ) ) ) ) ∨ βˆƒ 𝑖 ∈ Ο‰ ( π‘₯ = βˆ€π‘” 𝑖 ( 1st β€˜ 𝑒 ) ∧ 𝑦 = { π‘Ž ∈ ( 𝑀 ↑m Ο‰ ) ∣ βˆ€ 𝑧 ∈ 𝑀 ( { ⟨ 𝑖 , 𝑧 ⟩ } βˆͺ ( π‘Ž β†Ύ ( Ο‰ βˆ– { 𝑖 } ) ) ) ∈ ( 2nd β€˜ 𝑒 ) } ) ) } ) = ( ran ( ( 𝑀 Sat 𝐸 ) β€˜ 𝑏 ) βˆͺ ran { ⟨ π‘₯ , 𝑦 ⟩ ∣ βˆƒ 𝑒 ∈ ( ( 𝑀 Sat 𝐸 ) β€˜ 𝑏 ) ( βˆƒ 𝑣 ∈ ( ( 𝑀 Sat 𝐸 ) β€˜ 𝑏 ) ( π‘₯ = ( ( 1st β€˜ 𝑒 ) βŠΌπ‘” ( 1st β€˜ 𝑣 ) ) ∧ 𝑦 = ( ( 𝑀 ↑m Ο‰ ) βˆ– ( ( 2nd β€˜ 𝑒 ) ∩ ( 2nd β€˜ 𝑣 ) ) ) ) ∨ βˆƒ 𝑖 ∈ Ο‰ ( π‘₯ = βˆ€π‘” 𝑖 ( 1st β€˜ 𝑒 ) ∧ 𝑦 = { π‘Ž ∈ ( 𝑀 ↑m Ο‰ ) ∣ βˆ€ 𝑧 ∈ 𝑀 ( { ⟨ 𝑖 , 𝑧 ⟩ } βˆͺ ( π‘Ž β†Ύ ( Ο‰ βˆ– { 𝑖 } ) ) ) ∈ ( 2nd β€˜ 𝑒 ) } ) ) } )
50 48 49 eqtrdi ⊒ ( ( ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ π‘Š ) ∧ 𝑏 ∈ Ο‰ ) β†’ ran ( ( 𝑀 Sat 𝐸 ) β€˜ suc 𝑏 ) = ( ran ( ( 𝑀 Sat 𝐸 ) β€˜ 𝑏 ) βˆͺ ran { ⟨ π‘₯ , 𝑦 ⟩ ∣ βˆƒ 𝑒 ∈ ( ( 𝑀 Sat 𝐸 ) β€˜ 𝑏 ) ( βˆƒ 𝑣 ∈ ( ( 𝑀 Sat 𝐸 ) β€˜ 𝑏 ) ( π‘₯ = ( ( 1st β€˜ 𝑒 ) βŠΌπ‘” ( 1st β€˜ 𝑣 ) ) ∧ 𝑦 = ( ( 𝑀 ↑m Ο‰ ) βˆ– ( ( 2nd β€˜ 𝑒 ) ∩ ( 2nd β€˜ 𝑣 ) ) ) ) ∨ βˆƒ 𝑖 ∈ Ο‰ ( π‘₯ = βˆ€π‘” 𝑖 ( 1st β€˜ 𝑒 ) ∧ 𝑦 = { π‘Ž ∈ ( 𝑀 ↑m Ο‰ ) ∣ βˆ€ 𝑧 ∈ 𝑀 ( { ⟨ 𝑖 , 𝑧 ⟩ } βˆͺ ( π‘Ž β†Ύ ( Ο‰ βˆ– { 𝑖 } ) ) ) ∈ ( 2nd β€˜ 𝑒 ) } ) ) } ) )
51 50 eleq2d ⊒ ( ( ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ π‘Š ) ∧ 𝑏 ∈ Ο‰ ) β†’ ( 𝑛 ∈ ran ( ( 𝑀 Sat 𝐸 ) β€˜ suc 𝑏 ) ↔ 𝑛 ∈ ( ran ( ( 𝑀 Sat 𝐸 ) β€˜ 𝑏 ) βˆͺ ran { ⟨ π‘₯ , 𝑦 ⟩ ∣ βˆƒ 𝑒 ∈ ( ( 𝑀 Sat 𝐸 ) β€˜ 𝑏 ) ( βˆƒ 𝑣 ∈ ( ( 𝑀 Sat 𝐸 ) β€˜ 𝑏 ) ( π‘₯ = ( ( 1st β€˜ 𝑒 ) βŠΌπ‘” ( 1st β€˜ 𝑣 ) ) ∧ 𝑦 = ( ( 𝑀 ↑m Ο‰ ) βˆ– ( ( 2nd β€˜ 𝑒 ) ∩ ( 2nd β€˜ 𝑣 ) ) ) ) ∨ βˆƒ 𝑖 ∈ Ο‰ ( π‘₯ = βˆ€π‘” 𝑖 ( 1st β€˜ 𝑒 ) ∧ 𝑦 = { π‘Ž ∈ ( 𝑀 ↑m Ο‰ ) ∣ βˆ€ 𝑧 ∈ 𝑀 ( { ⟨ 𝑖 , 𝑧 ⟩ } βˆͺ ( π‘Ž β†Ύ ( Ο‰ βˆ– { 𝑖 } ) ) ) ∈ ( 2nd β€˜ 𝑒 ) } ) ) } ) ) )
52 elun ⊒ ( 𝑛 ∈ ( ran ( ( 𝑀 Sat 𝐸 ) β€˜ 𝑏 ) βˆͺ ran { ⟨ π‘₯ , 𝑦 ⟩ ∣ βˆƒ 𝑒 ∈ ( ( 𝑀 Sat 𝐸 ) β€˜ 𝑏 ) ( βˆƒ 𝑣 ∈ ( ( 𝑀 Sat 𝐸 ) β€˜ 𝑏 ) ( π‘₯ = ( ( 1st β€˜ 𝑒 ) βŠΌπ‘” ( 1st β€˜ 𝑣 ) ) ∧ 𝑦 = ( ( 𝑀 ↑m Ο‰ ) βˆ– ( ( 2nd β€˜ 𝑒 ) ∩ ( 2nd β€˜ 𝑣 ) ) ) ) ∨ βˆƒ 𝑖 ∈ Ο‰ ( π‘₯ = βˆ€π‘” 𝑖 ( 1st β€˜ 𝑒 ) ∧ 𝑦 = { π‘Ž ∈ ( 𝑀 ↑m Ο‰ ) ∣ βˆ€ 𝑧 ∈ 𝑀 ( { ⟨ 𝑖 , 𝑧 ⟩ } βˆͺ ( π‘Ž β†Ύ ( Ο‰ βˆ– { 𝑖 } ) ) ) ∈ ( 2nd β€˜ 𝑒 ) } ) ) } ) ↔ ( 𝑛 ∈ ran ( ( 𝑀 Sat 𝐸 ) β€˜ 𝑏 ) ∨ 𝑛 ∈ ran { ⟨ π‘₯ , 𝑦 ⟩ ∣ βˆƒ 𝑒 ∈ ( ( 𝑀 Sat 𝐸 ) β€˜ 𝑏 ) ( βˆƒ 𝑣 ∈ ( ( 𝑀 Sat 𝐸 ) β€˜ 𝑏 ) ( π‘₯ = ( ( 1st β€˜ 𝑒 ) βŠΌπ‘” ( 1st β€˜ 𝑣 ) ) ∧ 𝑦 = ( ( 𝑀 ↑m Ο‰ ) βˆ– ( ( 2nd β€˜ 𝑒 ) ∩ ( 2nd β€˜ 𝑣 ) ) ) ) ∨ βˆƒ 𝑖 ∈ Ο‰ ( π‘₯ = βˆ€π‘” 𝑖 ( 1st β€˜ 𝑒 ) ∧ 𝑦 = { π‘Ž ∈ ( 𝑀 ↑m Ο‰ ) ∣ βˆ€ 𝑧 ∈ 𝑀 ( { ⟨ 𝑖 , 𝑧 ⟩ } βˆͺ ( π‘Ž β†Ύ ( Ο‰ βˆ– { 𝑖 } ) ) ) ∈ ( 2nd β€˜ 𝑒 ) } ) ) } ) )
53 rnopab ⊒ ran { ⟨ π‘₯ , 𝑦 ⟩ ∣ βˆƒ 𝑒 ∈ ( ( 𝑀 Sat 𝐸 ) β€˜ 𝑏 ) ( βˆƒ 𝑣 ∈ ( ( 𝑀 Sat 𝐸 ) β€˜ 𝑏 ) ( π‘₯ = ( ( 1st β€˜ 𝑒 ) βŠΌπ‘” ( 1st β€˜ 𝑣 ) ) ∧ 𝑦 = ( ( 𝑀 ↑m Ο‰ ) βˆ– ( ( 2nd β€˜ 𝑒 ) ∩ ( 2nd β€˜ 𝑣 ) ) ) ) ∨ βˆƒ 𝑖 ∈ Ο‰ ( π‘₯ = βˆ€π‘” 𝑖 ( 1st β€˜ 𝑒 ) ∧ 𝑦 = { π‘Ž ∈ ( 𝑀 ↑m Ο‰ ) ∣ βˆ€ 𝑧 ∈ 𝑀 ( { ⟨ 𝑖 , 𝑧 ⟩ } βˆͺ ( π‘Ž β†Ύ ( Ο‰ βˆ– { 𝑖 } ) ) ) ∈ ( 2nd β€˜ 𝑒 ) } ) ) } = { 𝑦 ∣ βˆƒ π‘₯ βˆƒ 𝑒 ∈ ( ( 𝑀 Sat 𝐸 ) β€˜ 𝑏 ) ( βˆƒ 𝑣 ∈ ( ( 𝑀 Sat 𝐸 ) β€˜ 𝑏 ) ( π‘₯ = ( ( 1st β€˜ 𝑒 ) βŠΌπ‘” ( 1st β€˜ 𝑣 ) ) ∧ 𝑦 = ( ( 𝑀 ↑m Ο‰ ) βˆ– ( ( 2nd β€˜ 𝑒 ) ∩ ( 2nd β€˜ 𝑣 ) ) ) ) ∨ βˆƒ 𝑖 ∈ Ο‰ ( π‘₯ = βˆ€π‘” 𝑖 ( 1st β€˜ 𝑒 ) ∧ 𝑦 = { π‘Ž ∈ ( 𝑀 ↑m Ο‰ ) ∣ βˆ€ 𝑧 ∈ 𝑀 ( { ⟨ 𝑖 , 𝑧 ⟩ } βˆͺ ( π‘Ž β†Ύ ( Ο‰ βˆ– { 𝑖 } ) ) ) ∈ ( 2nd β€˜ 𝑒 ) } ) ) }
54 53 eleq2i ⊒ ( 𝑛 ∈ ran { ⟨ π‘₯ , 𝑦 ⟩ ∣ βˆƒ 𝑒 ∈ ( ( 𝑀 Sat 𝐸 ) β€˜ 𝑏 ) ( βˆƒ 𝑣 ∈ ( ( 𝑀 Sat 𝐸 ) β€˜ 𝑏 ) ( π‘₯ = ( ( 1st β€˜ 𝑒 ) βŠΌπ‘” ( 1st β€˜ 𝑣 ) ) ∧ 𝑦 = ( ( 𝑀 ↑m Ο‰ ) βˆ– ( ( 2nd β€˜ 𝑒 ) ∩ ( 2nd β€˜ 𝑣 ) ) ) ) ∨ βˆƒ 𝑖 ∈ Ο‰ ( π‘₯ = βˆ€π‘” 𝑖 ( 1st β€˜ 𝑒 ) ∧ 𝑦 = { π‘Ž ∈ ( 𝑀 ↑m Ο‰ ) ∣ βˆ€ 𝑧 ∈ 𝑀 ( { ⟨ 𝑖 , 𝑧 ⟩ } βˆͺ ( π‘Ž β†Ύ ( Ο‰ βˆ– { 𝑖 } ) ) ) ∈ ( 2nd β€˜ 𝑒 ) } ) ) } ↔ 𝑛 ∈ { 𝑦 ∣ βˆƒ π‘₯ βˆƒ 𝑒 ∈ ( ( 𝑀 Sat 𝐸 ) β€˜ 𝑏 ) ( βˆƒ 𝑣 ∈ ( ( 𝑀 Sat 𝐸 ) β€˜ 𝑏 ) ( π‘₯ = ( ( 1st β€˜ 𝑒 ) βŠΌπ‘” ( 1st β€˜ 𝑣 ) ) ∧ 𝑦 = ( ( 𝑀 ↑m Ο‰ ) βˆ– ( ( 2nd β€˜ 𝑒 ) ∩ ( 2nd β€˜ 𝑣 ) ) ) ) ∨ βˆƒ 𝑖 ∈ Ο‰ ( π‘₯ = βˆ€π‘” 𝑖 ( 1st β€˜ 𝑒 ) ∧ 𝑦 = { π‘Ž ∈ ( 𝑀 ↑m Ο‰ ) ∣ βˆ€ 𝑧 ∈ 𝑀 ( { ⟨ 𝑖 , 𝑧 ⟩ } βˆͺ ( π‘Ž β†Ύ ( Ο‰ βˆ– { 𝑖 } ) ) ) ∈ ( 2nd β€˜ 𝑒 ) } ) ) } )
55 eqeq1 ⊒ ( 𝑦 = 𝑛 β†’ ( 𝑦 = ( ( 𝑀 ↑m Ο‰ ) βˆ– ( ( 2nd β€˜ 𝑒 ) ∩ ( 2nd β€˜ 𝑣 ) ) ) ↔ 𝑛 = ( ( 𝑀 ↑m Ο‰ ) βˆ– ( ( 2nd β€˜ 𝑒 ) ∩ ( 2nd β€˜ 𝑣 ) ) ) ) )
56 55 anbi2d ⊒ ( 𝑦 = 𝑛 β†’ ( ( π‘₯ = ( ( 1st β€˜ 𝑒 ) βŠΌπ‘” ( 1st β€˜ 𝑣 ) ) ∧ 𝑦 = ( ( 𝑀 ↑m Ο‰ ) βˆ– ( ( 2nd β€˜ 𝑒 ) ∩ ( 2nd β€˜ 𝑣 ) ) ) ) ↔ ( π‘₯ = ( ( 1st β€˜ 𝑒 ) βŠΌπ‘” ( 1st β€˜ 𝑣 ) ) ∧ 𝑛 = ( ( 𝑀 ↑m Ο‰ ) βˆ– ( ( 2nd β€˜ 𝑒 ) ∩ ( 2nd β€˜ 𝑣 ) ) ) ) ) )
57 56 rexbidv ⊒ ( 𝑦 = 𝑛 β†’ ( βˆƒ 𝑣 ∈ ( ( 𝑀 Sat 𝐸 ) β€˜ 𝑏 ) ( π‘₯ = ( ( 1st β€˜ 𝑒 ) βŠΌπ‘” ( 1st β€˜ 𝑣 ) ) ∧ 𝑦 = ( ( 𝑀 ↑m Ο‰ ) βˆ– ( ( 2nd β€˜ 𝑒 ) ∩ ( 2nd β€˜ 𝑣 ) ) ) ) ↔ βˆƒ 𝑣 ∈ ( ( 𝑀 Sat 𝐸 ) β€˜ 𝑏 ) ( π‘₯ = ( ( 1st β€˜ 𝑒 ) βŠΌπ‘” ( 1st β€˜ 𝑣 ) ) ∧ 𝑛 = ( ( 𝑀 ↑m Ο‰ ) βˆ– ( ( 2nd β€˜ 𝑒 ) ∩ ( 2nd β€˜ 𝑣 ) ) ) ) ) )
58 eqeq1 ⊒ ( 𝑦 = 𝑛 β†’ ( 𝑦 = { π‘Ž ∈ ( 𝑀 ↑m Ο‰ ) ∣ βˆ€ 𝑧 ∈ 𝑀 ( { ⟨ 𝑖 , 𝑧 ⟩ } βˆͺ ( π‘Ž β†Ύ ( Ο‰ βˆ– { 𝑖 } ) ) ) ∈ ( 2nd β€˜ 𝑒 ) } ↔ 𝑛 = { π‘Ž ∈ ( 𝑀 ↑m Ο‰ ) ∣ βˆ€ 𝑧 ∈ 𝑀 ( { ⟨ 𝑖 , 𝑧 ⟩ } βˆͺ ( π‘Ž β†Ύ ( Ο‰ βˆ– { 𝑖 } ) ) ) ∈ ( 2nd β€˜ 𝑒 ) } ) )
59 58 anbi2d ⊒ ( 𝑦 = 𝑛 β†’ ( ( π‘₯ = βˆ€π‘” 𝑖 ( 1st β€˜ 𝑒 ) ∧ 𝑦 = { π‘Ž ∈ ( 𝑀 ↑m Ο‰ ) ∣ βˆ€ 𝑧 ∈ 𝑀 ( { ⟨ 𝑖 , 𝑧 ⟩ } βˆͺ ( π‘Ž β†Ύ ( Ο‰ βˆ– { 𝑖 } ) ) ) ∈ ( 2nd β€˜ 𝑒 ) } ) ↔ ( π‘₯ = βˆ€π‘” 𝑖 ( 1st β€˜ 𝑒 ) ∧ 𝑛 = { π‘Ž ∈ ( 𝑀 ↑m Ο‰ ) ∣ βˆ€ 𝑧 ∈ 𝑀 ( { ⟨ 𝑖 , 𝑧 ⟩ } βˆͺ ( π‘Ž β†Ύ ( Ο‰ βˆ– { 𝑖 } ) ) ) ∈ ( 2nd β€˜ 𝑒 ) } ) ) )
60 59 rexbidv ⊒ ( 𝑦 = 𝑛 β†’ ( βˆƒ 𝑖 ∈ Ο‰ ( π‘₯ = βˆ€π‘” 𝑖 ( 1st β€˜ 𝑒 ) ∧ 𝑦 = { π‘Ž ∈ ( 𝑀 ↑m Ο‰ ) ∣ βˆ€ 𝑧 ∈ 𝑀 ( { ⟨ 𝑖 , 𝑧 ⟩ } βˆͺ ( π‘Ž β†Ύ ( Ο‰ βˆ– { 𝑖 } ) ) ) ∈ ( 2nd β€˜ 𝑒 ) } ) ↔ βˆƒ 𝑖 ∈ Ο‰ ( π‘₯ = βˆ€π‘” 𝑖 ( 1st β€˜ 𝑒 ) ∧ 𝑛 = { π‘Ž ∈ ( 𝑀 ↑m Ο‰ ) ∣ βˆ€ 𝑧 ∈ 𝑀 ( { ⟨ 𝑖 , 𝑧 ⟩ } βˆͺ ( π‘Ž β†Ύ ( Ο‰ βˆ– { 𝑖 } ) ) ) ∈ ( 2nd β€˜ 𝑒 ) } ) ) )
61 57 60 orbi12d ⊒ ( 𝑦 = 𝑛 β†’ ( ( βˆƒ 𝑣 ∈ ( ( 𝑀 Sat 𝐸 ) β€˜ 𝑏 ) ( π‘₯ = ( ( 1st β€˜ 𝑒 ) βŠΌπ‘” ( 1st β€˜ 𝑣 ) ) ∧ 𝑦 = ( ( 𝑀 ↑m Ο‰ ) βˆ– ( ( 2nd β€˜ 𝑒 ) ∩ ( 2nd β€˜ 𝑣 ) ) ) ) ∨ βˆƒ 𝑖 ∈ Ο‰ ( π‘₯ = βˆ€π‘” 𝑖 ( 1st β€˜ 𝑒 ) ∧ 𝑦 = { π‘Ž ∈ ( 𝑀 ↑m Ο‰ ) ∣ βˆ€ 𝑧 ∈ 𝑀 ( { ⟨ 𝑖 , 𝑧 ⟩ } βˆͺ ( π‘Ž β†Ύ ( Ο‰ βˆ– { 𝑖 } ) ) ) ∈ ( 2nd β€˜ 𝑒 ) } ) ) ↔ ( βˆƒ 𝑣 ∈ ( ( 𝑀 Sat 𝐸 ) β€˜ 𝑏 ) ( π‘₯ = ( ( 1st β€˜ 𝑒 ) βŠΌπ‘” ( 1st β€˜ 𝑣 ) ) ∧ 𝑛 = ( ( 𝑀 ↑m Ο‰ ) βˆ– ( ( 2nd β€˜ 𝑒 ) ∩ ( 2nd β€˜ 𝑣 ) ) ) ) ∨ βˆƒ 𝑖 ∈ Ο‰ ( π‘₯ = βˆ€π‘” 𝑖 ( 1st β€˜ 𝑒 ) ∧ 𝑛 = { π‘Ž ∈ ( 𝑀 ↑m Ο‰ ) ∣ βˆ€ 𝑧 ∈ 𝑀 ( { ⟨ 𝑖 , 𝑧 ⟩ } βˆͺ ( π‘Ž β†Ύ ( Ο‰ βˆ– { 𝑖 } ) ) ) ∈ ( 2nd β€˜ 𝑒 ) } ) ) ) )
62 61 rexbidv ⊒ ( 𝑦 = 𝑛 β†’ ( βˆƒ 𝑒 ∈ ( ( 𝑀 Sat 𝐸 ) β€˜ 𝑏 ) ( βˆƒ 𝑣 ∈ ( ( 𝑀 Sat 𝐸 ) β€˜ 𝑏 ) ( π‘₯ = ( ( 1st β€˜ 𝑒 ) βŠΌπ‘” ( 1st β€˜ 𝑣 ) ) ∧ 𝑦 = ( ( 𝑀 ↑m Ο‰ ) βˆ– ( ( 2nd β€˜ 𝑒 ) ∩ ( 2nd β€˜ 𝑣 ) ) ) ) ∨ βˆƒ 𝑖 ∈ Ο‰ ( π‘₯ = βˆ€π‘” 𝑖 ( 1st β€˜ 𝑒 ) ∧ 𝑦 = { π‘Ž ∈ ( 𝑀 ↑m Ο‰ ) ∣ βˆ€ 𝑧 ∈ 𝑀 ( { ⟨ 𝑖 , 𝑧 ⟩ } βˆͺ ( π‘Ž β†Ύ ( Ο‰ βˆ– { 𝑖 } ) ) ) ∈ ( 2nd β€˜ 𝑒 ) } ) ) ↔ βˆƒ 𝑒 ∈ ( ( 𝑀 Sat 𝐸 ) β€˜ 𝑏 ) ( βˆƒ 𝑣 ∈ ( ( 𝑀 Sat 𝐸 ) β€˜ 𝑏 ) ( π‘₯ = ( ( 1st β€˜ 𝑒 ) βŠΌπ‘” ( 1st β€˜ 𝑣 ) ) ∧ 𝑛 = ( ( 𝑀 ↑m Ο‰ ) βˆ– ( ( 2nd β€˜ 𝑒 ) ∩ ( 2nd β€˜ 𝑣 ) ) ) ) ∨ βˆƒ 𝑖 ∈ Ο‰ ( π‘₯ = βˆ€π‘” 𝑖 ( 1st β€˜ 𝑒 ) ∧ 𝑛 = { π‘Ž ∈ ( 𝑀 ↑m Ο‰ ) ∣ βˆ€ 𝑧 ∈ 𝑀 ( { ⟨ 𝑖 , 𝑧 ⟩ } βˆͺ ( π‘Ž β†Ύ ( Ο‰ βˆ– { 𝑖 } ) ) ) ∈ ( 2nd β€˜ 𝑒 ) } ) ) ) )
63 62 exbidv ⊒ ( 𝑦 = 𝑛 β†’ ( βˆƒ π‘₯ βˆƒ 𝑒 ∈ ( ( 𝑀 Sat 𝐸 ) β€˜ 𝑏 ) ( βˆƒ 𝑣 ∈ ( ( 𝑀 Sat 𝐸 ) β€˜ 𝑏 ) ( π‘₯ = ( ( 1st β€˜ 𝑒 ) βŠΌπ‘” ( 1st β€˜ 𝑣 ) ) ∧ 𝑦 = ( ( 𝑀 ↑m Ο‰ ) βˆ– ( ( 2nd β€˜ 𝑒 ) ∩ ( 2nd β€˜ 𝑣 ) ) ) ) ∨ βˆƒ 𝑖 ∈ Ο‰ ( π‘₯ = βˆ€π‘” 𝑖 ( 1st β€˜ 𝑒 ) ∧ 𝑦 = { π‘Ž ∈ ( 𝑀 ↑m Ο‰ ) ∣ βˆ€ 𝑧 ∈ 𝑀 ( { ⟨ 𝑖 , 𝑧 ⟩ } βˆͺ ( π‘Ž β†Ύ ( Ο‰ βˆ– { 𝑖 } ) ) ) ∈ ( 2nd β€˜ 𝑒 ) } ) ) ↔ βˆƒ π‘₯ βˆƒ 𝑒 ∈ ( ( 𝑀 Sat 𝐸 ) β€˜ 𝑏 ) ( βˆƒ 𝑣 ∈ ( ( 𝑀 Sat 𝐸 ) β€˜ 𝑏 ) ( π‘₯ = ( ( 1st β€˜ 𝑒 ) βŠΌπ‘” ( 1st β€˜ 𝑣 ) ) ∧ 𝑛 = ( ( 𝑀 ↑m Ο‰ ) βˆ– ( ( 2nd β€˜ 𝑒 ) ∩ ( 2nd β€˜ 𝑣 ) ) ) ) ∨ βˆƒ 𝑖 ∈ Ο‰ ( π‘₯ = βˆ€π‘” 𝑖 ( 1st β€˜ 𝑒 ) ∧ 𝑛 = { π‘Ž ∈ ( 𝑀 ↑m Ο‰ ) ∣ βˆ€ 𝑧 ∈ 𝑀 ( { ⟨ 𝑖 , 𝑧 ⟩ } βˆͺ ( π‘Ž β†Ύ ( Ο‰ βˆ– { 𝑖 } ) ) ) ∈ ( 2nd β€˜ 𝑒 ) } ) ) ) )
64 27 63 elab ⊒ ( 𝑛 ∈ { 𝑦 ∣ βˆƒ π‘₯ βˆƒ 𝑒 ∈ ( ( 𝑀 Sat 𝐸 ) β€˜ 𝑏 ) ( βˆƒ 𝑣 ∈ ( ( 𝑀 Sat 𝐸 ) β€˜ 𝑏 ) ( π‘₯ = ( ( 1st β€˜ 𝑒 ) βŠΌπ‘” ( 1st β€˜ 𝑣 ) ) ∧ 𝑦 = ( ( 𝑀 ↑m Ο‰ ) βˆ– ( ( 2nd β€˜ 𝑒 ) ∩ ( 2nd β€˜ 𝑣 ) ) ) ) ∨ βˆƒ 𝑖 ∈ Ο‰ ( π‘₯ = βˆ€π‘” 𝑖 ( 1st β€˜ 𝑒 ) ∧ 𝑦 = { π‘Ž ∈ ( 𝑀 ↑m Ο‰ ) ∣ βˆ€ 𝑧 ∈ 𝑀 ( { ⟨ 𝑖 , 𝑧 ⟩ } βˆͺ ( π‘Ž β†Ύ ( Ο‰ βˆ– { 𝑖 } ) ) ) ∈ ( 2nd β€˜ 𝑒 ) } ) ) } ↔ βˆƒ π‘₯ βˆƒ 𝑒 ∈ ( ( 𝑀 Sat 𝐸 ) β€˜ 𝑏 ) ( βˆƒ 𝑣 ∈ ( ( 𝑀 Sat 𝐸 ) β€˜ 𝑏 ) ( π‘₯ = ( ( 1st β€˜ 𝑒 ) βŠΌπ‘” ( 1st β€˜ 𝑣 ) ) ∧ 𝑛 = ( ( 𝑀 ↑m Ο‰ ) βˆ– ( ( 2nd β€˜ 𝑒 ) ∩ ( 2nd β€˜ 𝑣 ) ) ) ) ∨ βˆƒ 𝑖 ∈ Ο‰ ( π‘₯ = βˆ€π‘” 𝑖 ( 1st β€˜ 𝑒 ) ∧ 𝑛 = { π‘Ž ∈ ( 𝑀 ↑m Ο‰ ) ∣ βˆ€ 𝑧 ∈ 𝑀 ( { ⟨ 𝑖 , 𝑧 ⟩ } βˆͺ ( π‘Ž β†Ύ ( Ο‰ βˆ– { 𝑖 } ) ) ) ∈ ( 2nd β€˜ 𝑒 ) } ) ) )
65 54 64 bitri ⊒ ( 𝑛 ∈ ran { ⟨ π‘₯ , 𝑦 ⟩ ∣ βˆƒ 𝑒 ∈ ( ( 𝑀 Sat 𝐸 ) β€˜ 𝑏 ) ( βˆƒ 𝑣 ∈ ( ( 𝑀 Sat 𝐸 ) β€˜ 𝑏 ) ( π‘₯ = ( ( 1st β€˜ 𝑒 ) βŠΌπ‘” ( 1st β€˜ 𝑣 ) ) ∧ 𝑦 = ( ( 𝑀 ↑m Ο‰ ) βˆ– ( ( 2nd β€˜ 𝑒 ) ∩ ( 2nd β€˜ 𝑣 ) ) ) ) ∨ βˆƒ 𝑖 ∈ Ο‰ ( π‘₯ = βˆ€π‘” 𝑖 ( 1st β€˜ 𝑒 ) ∧ 𝑦 = { π‘Ž ∈ ( 𝑀 ↑m Ο‰ ) ∣ βˆ€ 𝑧 ∈ 𝑀 ( { ⟨ 𝑖 , 𝑧 ⟩ } βˆͺ ( π‘Ž β†Ύ ( Ο‰ βˆ– { 𝑖 } ) ) ) ∈ ( 2nd β€˜ 𝑒 ) } ) ) } ↔ βˆƒ π‘₯ βˆƒ 𝑒 ∈ ( ( 𝑀 Sat 𝐸 ) β€˜ 𝑏 ) ( βˆƒ 𝑣 ∈ ( ( 𝑀 Sat 𝐸 ) β€˜ 𝑏 ) ( π‘₯ = ( ( 1st β€˜ 𝑒 ) βŠΌπ‘” ( 1st β€˜ 𝑣 ) ) ∧ 𝑛 = ( ( 𝑀 ↑m Ο‰ ) βˆ– ( ( 2nd β€˜ 𝑒 ) ∩ ( 2nd β€˜ 𝑣 ) ) ) ) ∨ βˆƒ 𝑖 ∈ Ο‰ ( π‘₯ = βˆ€π‘” 𝑖 ( 1st β€˜ 𝑒 ) ∧ 𝑛 = { π‘Ž ∈ ( 𝑀 ↑m Ο‰ ) ∣ βˆ€ 𝑧 ∈ 𝑀 ( { ⟨ 𝑖 , 𝑧 ⟩ } βˆͺ ( π‘Ž β†Ύ ( Ο‰ βˆ– { 𝑖 } ) ) ) ∈ ( 2nd β€˜ 𝑒 ) } ) ) )
66 65 orbi2i ⊒ ( ( 𝑛 ∈ ran ( ( 𝑀 Sat 𝐸 ) β€˜ 𝑏 ) ∨ 𝑛 ∈ ran { ⟨ π‘₯ , 𝑦 ⟩ ∣ βˆƒ 𝑒 ∈ ( ( 𝑀 Sat 𝐸 ) β€˜ 𝑏 ) ( βˆƒ 𝑣 ∈ ( ( 𝑀 Sat 𝐸 ) β€˜ 𝑏 ) ( π‘₯ = ( ( 1st β€˜ 𝑒 ) βŠΌπ‘” ( 1st β€˜ 𝑣 ) ) ∧ 𝑦 = ( ( 𝑀 ↑m Ο‰ ) βˆ– ( ( 2nd β€˜ 𝑒 ) ∩ ( 2nd β€˜ 𝑣 ) ) ) ) ∨ βˆƒ 𝑖 ∈ Ο‰ ( π‘₯ = βˆ€π‘” 𝑖 ( 1st β€˜ 𝑒 ) ∧ 𝑦 = { π‘Ž ∈ ( 𝑀 ↑m Ο‰ ) ∣ βˆ€ 𝑧 ∈ 𝑀 ( { ⟨ 𝑖 , 𝑧 ⟩ } βˆͺ ( π‘Ž β†Ύ ( Ο‰ βˆ– { 𝑖 } ) ) ) ∈ ( 2nd β€˜ 𝑒 ) } ) ) } ) ↔ ( 𝑛 ∈ ran ( ( 𝑀 Sat 𝐸 ) β€˜ 𝑏 ) ∨ βˆƒ π‘₯ βˆƒ 𝑒 ∈ ( ( 𝑀 Sat 𝐸 ) β€˜ 𝑏 ) ( βˆƒ 𝑣 ∈ ( ( 𝑀 Sat 𝐸 ) β€˜ 𝑏 ) ( π‘₯ = ( ( 1st β€˜ 𝑒 ) βŠΌπ‘” ( 1st β€˜ 𝑣 ) ) ∧ 𝑛 = ( ( 𝑀 ↑m Ο‰ ) βˆ– ( ( 2nd β€˜ 𝑒 ) ∩ ( 2nd β€˜ 𝑣 ) ) ) ) ∨ βˆƒ 𝑖 ∈ Ο‰ ( π‘₯ = βˆ€π‘” 𝑖 ( 1st β€˜ 𝑒 ) ∧ 𝑛 = { π‘Ž ∈ ( 𝑀 ↑m Ο‰ ) ∣ βˆ€ 𝑧 ∈ 𝑀 ( { ⟨ 𝑖 , 𝑧 ⟩ } βˆͺ ( π‘Ž β†Ύ ( Ο‰ βˆ– { 𝑖 } ) ) ) ∈ ( 2nd β€˜ 𝑒 ) } ) ) ) )
67 52 66 bitri ⊒ ( 𝑛 ∈ ( ran ( ( 𝑀 Sat 𝐸 ) β€˜ 𝑏 ) βˆͺ ran { ⟨ π‘₯ , 𝑦 ⟩ ∣ βˆƒ 𝑒 ∈ ( ( 𝑀 Sat 𝐸 ) β€˜ 𝑏 ) ( βˆƒ 𝑣 ∈ ( ( 𝑀 Sat 𝐸 ) β€˜ 𝑏 ) ( π‘₯ = ( ( 1st β€˜ 𝑒 ) βŠΌπ‘” ( 1st β€˜ 𝑣 ) ) ∧ 𝑦 = ( ( 𝑀 ↑m Ο‰ ) βˆ– ( ( 2nd β€˜ 𝑒 ) ∩ ( 2nd β€˜ 𝑣 ) ) ) ) ∨ βˆƒ 𝑖 ∈ Ο‰ ( π‘₯ = βˆ€π‘” 𝑖 ( 1st β€˜ 𝑒 ) ∧ 𝑦 = { π‘Ž ∈ ( 𝑀 ↑m Ο‰ ) ∣ βˆ€ 𝑧 ∈ 𝑀 ( { ⟨ 𝑖 , 𝑧 ⟩ } βˆͺ ( π‘Ž β†Ύ ( Ο‰ βˆ– { 𝑖 } ) ) ) ∈ ( 2nd β€˜ 𝑒 ) } ) ) } ) ↔ ( 𝑛 ∈ ran ( ( 𝑀 Sat 𝐸 ) β€˜ 𝑏 ) ∨ βˆƒ π‘₯ βˆƒ 𝑒 ∈ ( ( 𝑀 Sat 𝐸 ) β€˜ 𝑏 ) ( βˆƒ 𝑣 ∈ ( ( 𝑀 Sat 𝐸 ) β€˜ 𝑏 ) ( π‘₯ = ( ( 1st β€˜ 𝑒 ) βŠΌπ‘” ( 1st β€˜ 𝑣 ) ) ∧ 𝑛 = ( ( 𝑀 ↑m Ο‰ ) βˆ– ( ( 2nd β€˜ 𝑒 ) ∩ ( 2nd β€˜ 𝑣 ) ) ) ) ∨ βˆƒ 𝑖 ∈ Ο‰ ( π‘₯ = βˆ€π‘” 𝑖 ( 1st β€˜ 𝑒 ) ∧ 𝑛 = { π‘Ž ∈ ( 𝑀 ↑m Ο‰ ) ∣ βˆ€ 𝑧 ∈ 𝑀 ( { ⟨ 𝑖 , 𝑧 ⟩ } βˆͺ ( π‘Ž β†Ύ ( Ο‰ βˆ– { 𝑖 } ) ) ) ∈ ( 2nd β€˜ 𝑒 ) } ) ) ) )
68 51 67 bitrdi ⊒ ( ( ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ π‘Š ) ∧ 𝑏 ∈ Ο‰ ) β†’ ( 𝑛 ∈ ran ( ( 𝑀 Sat 𝐸 ) β€˜ suc 𝑏 ) ↔ ( 𝑛 ∈ ran ( ( 𝑀 Sat 𝐸 ) β€˜ 𝑏 ) ∨ βˆƒ π‘₯ βˆƒ 𝑒 ∈ ( ( 𝑀 Sat 𝐸 ) β€˜ 𝑏 ) ( βˆƒ 𝑣 ∈ ( ( 𝑀 Sat 𝐸 ) β€˜ 𝑏 ) ( π‘₯ = ( ( 1st β€˜ 𝑒 ) βŠΌπ‘” ( 1st β€˜ 𝑣 ) ) ∧ 𝑛 = ( ( 𝑀 ↑m Ο‰ ) βˆ– ( ( 2nd β€˜ 𝑒 ) ∩ ( 2nd β€˜ 𝑣 ) ) ) ) ∨ βˆƒ 𝑖 ∈ Ο‰ ( π‘₯ = βˆ€π‘” 𝑖 ( 1st β€˜ 𝑒 ) ∧ 𝑛 = { π‘Ž ∈ ( 𝑀 ↑m Ο‰ ) ∣ βˆ€ 𝑧 ∈ 𝑀 ( { ⟨ 𝑖 , 𝑧 ⟩ } βˆͺ ( π‘Ž β†Ύ ( Ο‰ βˆ– { 𝑖 } ) ) ) ∈ ( 2nd β€˜ 𝑒 ) } ) ) ) ) )
69 68 expcom ⊒ ( 𝑏 ∈ Ο‰ β†’ ( ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ π‘Š ) β†’ ( 𝑛 ∈ ran ( ( 𝑀 Sat 𝐸 ) β€˜ suc 𝑏 ) ↔ ( 𝑛 ∈ ran ( ( 𝑀 Sat 𝐸 ) β€˜ 𝑏 ) ∨ βˆƒ π‘₯ βˆƒ 𝑒 ∈ ( ( 𝑀 Sat 𝐸 ) β€˜ 𝑏 ) ( βˆƒ 𝑣 ∈ ( ( 𝑀 Sat 𝐸 ) β€˜ 𝑏 ) ( π‘₯ = ( ( 1st β€˜ 𝑒 ) βŠΌπ‘” ( 1st β€˜ 𝑣 ) ) ∧ 𝑛 = ( ( 𝑀 ↑m Ο‰ ) βˆ– ( ( 2nd β€˜ 𝑒 ) ∩ ( 2nd β€˜ 𝑣 ) ) ) ) ∨ βˆƒ 𝑖 ∈ Ο‰ ( π‘₯ = βˆ€π‘” 𝑖 ( 1st β€˜ 𝑒 ) ∧ 𝑛 = { π‘Ž ∈ ( 𝑀 ↑m Ο‰ ) ∣ βˆ€ 𝑧 ∈ 𝑀 ( { ⟨ 𝑖 , 𝑧 ⟩ } βˆͺ ( π‘Ž β†Ύ ( Ο‰ βˆ– { 𝑖 } ) ) ) ∈ ( 2nd β€˜ 𝑒 ) } ) ) ) ) ) )
70 69 adantr ⊒ ( ( 𝑏 ∈ Ο‰ ∧ ( ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ π‘Š ) β†’ ( 𝑛 ∈ ran ( ( 𝑀 Sat 𝐸 ) β€˜ 𝑏 ) β†’ 𝑛 ∈ 𝒫 ( 𝑀 ↑m Ο‰ ) ) ) ) β†’ ( ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ π‘Š ) β†’ ( 𝑛 ∈ ran ( ( 𝑀 Sat 𝐸 ) β€˜ suc 𝑏 ) ↔ ( 𝑛 ∈ ran ( ( 𝑀 Sat 𝐸 ) β€˜ 𝑏 ) ∨ βˆƒ π‘₯ βˆƒ 𝑒 ∈ ( ( 𝑀 Sat 𝐸 ) β€˜ 𝑏 ) ( βˆƒ 𝑣 ∈ ( ( 𝑀 Sat 𝐸 ) β€˜ 𝑏 ) ( π‘₯ = ( ( 1st β€˜ 𝑒 ) βŠΌπ‘” ( 1st β€˜ 𝑣 ) ) ∧ 𝑛 = ( ( 𝑀 ↑m Ο‰ ) βˆ– ( ( 2nd β€˜ 𝑒 ) ∩ ( 2nd β€˜ 𝑣 ) ) ) ) ∨ βˆƒ 𝑖 ∈ Ο‰ ( π‘₯ = βˆ€π‘” 𝑖 ( 1st β€˜ 𝑒 ) ∧ 𝑛 = { π‘Ž ∈ ( 𝑀 ↑m Ο‰ ) ∣ βˆ€ 𝑧 ∈ 𝑀 ( { ⟨ 𝑖 , 𝑧 ⟩ } βˆͺ ( π‘Ž β†Ύ ( Ο‰ βˆ– { 𝑖 } ) ) ) ∈ ( 2nd β€˜ 𝑒 ) } ) ) ) ) ) )
71 70 imp ⊒ ( ( ( 𝑏 ∈ Ο‰ ∧ ( ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ π‘Š ) β†’ ( 𝑛 ∈ ran ( ( 𝑀 Sat 𝐸 ) β€˜ 𝑏 ) β†’ 𝑛 ∈ 𝒫 ( 𝑀 ↑m Ο‰ ) ) ) ) ∧ ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ π‘Š ) ) β†’ ( 𝑛 ∈ ran ( ( 𝑀 Sat 𝐸 ) β€˜ suc 𝑏 ) ↔ ( 𝑛 ∈ ran ( ( 𝑀 Sat 𝐸 ) β€˜ 𝑏 ) ∨ βˆƒ π‘₯ βˆƒ 𝑒 ∈ ( ( 𝑀 Sat 𝐸 ) β€˜ 𝑏 ) ( βˆƒ 𝑣 ∈ ( ( 𝑀 Sat 𝐸 ) β€˜ 𝑏 ) ( π‘₯ = ( ( 1st β€˜ 𝑒 ) βŠΌπ‘” ( 1st β€˜ 𝑣 ) ) ∧ 𝑛 = ( ( 𝑀 ↑m Ο‰ ) βˆ– ( ( 2nd β€˜ 𝑒 ) ∩ ( 2nd β€˜ 𝑣 ) ) ) ) ∨ βˆƒ 𝑖 ∈ Ο‰ ( π‘₯ = βˆ€π‘” 𝑖 ( 1st β€˜ 𝑒 ) ∧ 𝑛 = { π‘Ž ∈ ( 𝑀 ↑m Ο‰ ) ∣ βˆ€ 𝑧 ∈ 𝑀 ( { ⟨ 𝑖 , 𝑧 ⟩ } βˆͺ ( π‘Ž β†Ύ ( Ο‰ βˆ– { 𝑖 } ) ) ) ∈ ( 2nd β€˜ 𝑒 ) } ) ) ) ) )
72 simpr ⊒ ( ( 𝑏 ∈ Ο‰ ∧ ( ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ π‘Š ) β†’ ( 𝑛 ∈ ran ( ( 𝑀 Sat 𝐸 ) β€˜ 𝑏 ) β†’ 𝑛 ∈ 𝒫 ( 𝑀 ↑m Ο‰ ) ) ) ) β†’ ( ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ π‘Š ) β†’ ( 𝑛 ∈ ran ( ( 𝑀 Sat 𝐸 ) β€˜ 𝑏 ) β†’ 𝑛 ∈ 𝒫 ( 𝑀 ↑m Ο‰ ) ) ) )
73 72 imp ⊒ ( ( ( 𝑏 ∈ Ο‰ ∧ ( ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ π‘Š ) β†’ ( 𝑛 ∈ ran ( ( 𝑀 Sat 𝐸 ) β€˜ 𝑏 ) β†’ 𝑛 ∈ 𝒫 ( 𝑀 ↑m Ο‰ ) ) ) ) ∧ ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ π‘Š ) ) β†’ ( 𝑛 ∈ ran ( ( 𝑀 Sat 𝐸 ) β€˜ 𝑏 ) β†’ 𝑛 ∈ 𝒫 ( 𝑀 ↑m Ο‰ ) ) )
74 difss ⊒ ( ( 𝑀 ↑m Ο‰ ) βˆ– ( ( 2nd β€˜ 𝑒 ) ∩ ( 2nd β€˜ 𝑣 ) ) ) βŠ† ( 𝑀 ↑m Ο‰ )
75 33 74 elpwi2 ⊒ ( ( 𝑀 ↑m Ο‰ ) βˆ– ( ( 2nd β€˜ 𝑒 ) ∩ ( 2nd β€˜ 𝑣 ) ) ) ∈ 𝒫 ( 𝑀 ↑m Ο‰ )
76 eleq1 ⊒ ( 𝑛 = ( ( 𝑀 ↑m Ο‰ ) βˆ– ( ( 2nd β€˜ 𝑒 ) ∩ ( 2nd β€˜ 𝑣 ) ) ) β†’ ( 𝑛 ∈ 𝒫 ( 𝑀 ↑m Ο‰ ) ↔ ( ( 𝑀 ↑m Ο‰ ) βˆ– ( ( 2nd β€˜ 𝑒 ) ∩ ( 2nd β€˜ 𝑣 ) ) ) ∈ 𝒫 ( 𝑀 ↑m Ο‰ ) ) )
77 75 76 mpbiri ⊒ ( 𝑛 = ( ( 𝑀 ↑m Ο‰ ) βˆ– ( ( 2nd β€˜ 𝑒 ) ∩ ( 2nd β€˜ 𝑣 ) ) ) β†’ 𝑛 ∈ 𝒫 ( 𝑀 ↑m Ο‰ ) )
78 77 adantl ⊒ ( ( π‘₯ = ( ( 1st β€˜ 𝑒 ) βŠΌπ‘” ( 1st β€˜ 𝑣 ) ) ∧ 𝑛 = ( ( 𝑀 ↑m Ο‰ ) βˆ– ( ( 2nd β€˜ 𝑒 ) ∩ ( 2nd β€˜ 𝑣 ) ) ) ) β†’ 𝑛 ∈ 𝒫 ( 𝑀 ↑m Ο‰ ) )
79 78 adantl ⊒ ( ( 𝑣 ∈ ( ( 𝑀 Sat 𝐸 ) β€˜ 𝑏 ) ∧ ( π‘₯ = ( ( 1st β€˜ 𝑒 ) βŠΌπ‘” ( 1st β€˜ 𝑣 ) ) ∧ 𝑛 = ( ( 𝑀 ↑m Ο‰ ) βˆ– ( ( 2nd β€˜ 𝑒 ) ∩ ( 2nd β€˜ 𝑣 ) ) ) ) ) β†’ 𝑛 ∈ 𝒫 ( 𝑀 ↑m Ο‰ ) )
80 79 rexlimiva ⊒ ( βˆƒ 𝑣 ∈ ( ( 𝑀 Sat 𝐸 ) β€˜ 𝑏 ) ( π‘₯ = ( ( 1st β€˜ 𝑒 ) βŠΌπ‘” ( 1st β€˜ 𝑣 ) ) ∧ 𝑛 = ( ( 𝑀 ↑m Ο‰ ) βˆ– ( ( 2nd β€˜ 𝑒 ) ∩ ( 2nd β€˜ 𝑣 ) ) ) ) β†’ 𝑛 ∈ 𝒫 ( 𝑀 ↑m Ο‰ ) )
81 ssrab2 ⊒ { π‘Ž ∈ ( 𝑀 ↑m Ο‰ ) ∣ βˆ€ 𝑧 ∈ 𝑀 ( { ⟨ 𝑖 , 𝑧 ⟩ } βˆͺ ( π‘Ž β†Ύ ( Ο‰ βˆ– { 𝑖 } ) ) ) ∈ ( 2nd β€˜ 𝑒 ) } βŠ† ( 𝑀 ↑m Ο‰ )
82 33 81 elpwi2 ⊒ { π‘Ž ∈ ( 𝑀 ↑m Ο‰ ) ∣ βˆ€ 𝑧 ∈ 𝑀 ( { ⟨ 𝑖 , 𝑧 ⟩ } βˆͺ ( π‘Ž β†Ύ ( Ο‰ βˆ– { 𝑖 } ) ) ) ∈ ( 2nd β€˜ 𝑒 ) } ∈ 𝒫 ( 𝑀 ↑m Ο‰ )
83 eleq1 ⊒ ( 𝑛 = { π‘Ž ∈ ( 𝑀 ↑m Ο‰ ) ∣ βˆ€ 𝑧 ∈ 𝑀 ( { ⟨ 𝑖 , 𝑧 ⟩ } βˆͺ ( π‘Ž β†Ύ ( Ο‰ βˆ– { 𝑖 } ) ) ) ∈ ( 2nd β€˜ 𝑒 ) } β†’ ( 𝑛 ∈ 𝒫 ( 𝑀 ↑m Ο‰ ) ↔ { π‘Ž ∈ ( 𝑀 ↑m Ο‰ ) ∣ βˆ€ 𝑧 ∈ 𝑀 ( { ⟨ 𝑖 , 𝑧 ⟩ } βˆͺ ( π‘Ž β†Ύ ( Ο‰ βˆ– { 𝑖 } ) ) ) ∈ ( 2nd β€˜ 𝑒 ) } ∈ 𝒫 ( 𝑀 ↑m Ο‰ ) ) )
84 82 83 mpbiri ⊒ ( 𝑛 = { π‘Ž ∈ ( 𝑀 ↑m Ο‰ ) ∣ βˆ€ 𝑧 ∈ 𝑀 ( { ⟨ 𝑖 , 𝑧 ⟩ } βˆͺ ( π‘Ž β†Ύ ( Ο‰ βˆ– { 𝑖 } ) ) ) ∈ ( 2nd β€˜ 𝑒 ) } β†’ 𝑛 ∈ 𝒫 ( 𝑀 ↑m Ο‰ ) )
85 84 adantl ⊒ ( ( π‘₯ = βˆ€π‘” 𝑖 ( 1st β€˜ 𝑒 ) ∧ 𝑛 = { π‘Ž ∈ ( 𝑀 ↑m Ο‰ ) ∣ βˆ€ 𝑧 ∈ 𝑀 ( { ⟨ 𝑖 , 𝑧 ⟩ } βˆͺ ( π‘Ž β†Ύ ( Ο‰ βˆ– { 𝑖 } ) ) ) ∈ ( 2nd β€˜ 𝑒 ) } ) β†’ 𝑛 ∈ 𝒫 ( 𝑀 ↑m Ο‰ ) )
86 85 a1i ⊒ ( 𝑖 ∈ Ο‰ β†’ ( ( π‘₯ = βˆ€π‘” 𝑖 ( 1st β€˜ 𝑒 ) ∧ 𝑛 = { π‘Ž ∈ ( 𝑀 ↑m Ο‰ ) ∣ βˆ€ 𝑧 ∈ 𝑀 ( { ⟨ 𝑖 , 𝑧 ⟩ } βˆͺ ( π‘Ž β†Ύ ( Ο‰ βˆ– { 𝑖 } ) ) ) ∈ ( 2nd β€˜ 𝑒 ) } ) β†’ 𝑛 ∈ 𝒫 ( 𝑀 ↑m Ο‰ ) ) )
87 86 rexlimiv ⊒ ( βˆƒ 𝑖 ∈ Ο‰ ( π‘₯ = βˆ€π‘” 𝑖 ( 1st β€˜ 𝑒 ) ∧ 𝑛 = { π‘Ž ∈ ( 𝑀 ↑m Ο‰ ) ∣ βˆ€ 𝑧 ∈ 𝑀 ( { ⟨ 𝑖 , 𝑧 ⟩ } βˆͺ ( π‘Ž β†Ύ ( Ο‰ βˆ– { 𝑖 } ) ) ) ∈ ( 2nd β€˜ 𝑒 ) } ) β†’ 𝑛 ∈ 𝒫 ( 𝑀 ↑m Ο‰ ) )
88 80 87 jaoi ⊒ ( ( βˆƒ 𝑣 ∈ ( ( 𝑀 Sat 𝐸 ) β€˜ 𝑏 ) ( π‘₯ = ( ( 1st β€˜ 𝑒 ) βŠΌπ‘” ( 1st β€˜ 𝑣 ) ) ∧ 𝑛 = ( ( 𝑀 ↑m Ο‰ ) βˆ– ( ( 2nd β€˜ 𝑒 ) ∩ ( 2nd β€˜ 𝑣 ) ) ) ) ∨ βˆƒ 𝑖 ∈ Ο‰ ( π‘₯ = βˆ€π‘” 𝑖 ( 1st β€˜ 𝑒 ) ∧ 𝑛 = { π‘Ž ∈ ( 𝑀 ↑m Ο‰ ) ∣ βˆ€ 𝑧 ∈ 𝑀 ( { ⟨ 𝑖 , 𝑧 ⟩ } βˆͺ ( π‘Ž β†Ύ ( Ο‰ βˆ– { 𝑖 } ) ) ) ∈ ( 2nd β€˜ 𝑒 ) } ) ) β†’ 𝑛 ∈ 𝒫 ( 𝑀 ↑m Ο‰ ) )
89 88 a1i ⊒ ( 𝑒 ∈ ( ( 𝑀 Sat 𝐸 ) β€˜ 𝑏 ) β†’ ( ( βˆƒ 𝑣 ∈ ( ( 𝑀 Sat 𝐸 ) β€˜ 𝑏 ) ( π‘₯ = ( ( 1st β€˜ 𝑒 ) βŠΌπ‘” ( 1st β€˜ 𝑣 ) ) ∧ 𝑛 = ( ( 𝑀 ↑m Ο‰ ) βˆ– ( ( 2nd β€˜ 𝑒 ) ∩ ( 2nd β€˜ 𝑣 ) ) ) ) ∨ βˆƒ 𝑖 ∈ Ο‰ ( π‘₯ = βˆ€π‘” 𝑖 ( 1st β€˜ 𝑒 ) ∧ 𝑛 = { π‘Ž ∈ ( 𝑀 ↑m Ο‰ ) ∣ βˆ€ 𝑧 ∈ 𝑀 ( { ⟨ 𝑖 , 𝑧 ⟩ } βˆͺ ( π‘Ž β†Ύ ( Ο‰ βˆ– { 𝑖 } ) ) ) ∈ ( 2nd β€˜ 𝑒 ) } ) ) β†’ 𝑛 ∈ 𝒫 ( 𝑀 ↑m Ο‰ ) ) )
90 89 rexlimiv ⊒ ( βˆƒ 𝑒 ∈ ( ( 𝑀 Sat 𝐸 ) β€˜ 𝑏 ) ( βˆƒ 𝑣 ∈ ( ( 𝑀 Sat 𝐸 ) β€˜ 𝑏 ) ( π‘₯ = ( ( 1st β€˜ 𝑒 ) βŠΌπ‘” ( 1st β€˜ 𝑣 ) ) ∧ 𝑛 = ( ( 𝑀 ↑m Ο‰ ) βˆ– ( ( 2nd β€˜ 𝑒 ) ∩ ( 2nd β€˜ 𝑣 ) ) ) ) ∨ βˆƒ 𝑖 ∈ Ο‰ ( π‘₯ = βˆ€π‘” 𝑖 ( 1st β€˜ 𝑒 ) ∧ 𝑛 = { π‘Ž ∈ ( 𝑀 ↑m Ο‰ ) ∣ βˆ€ 𝑧 ∈ 𝑀 ( { ⟨ 𝑖 , 𝑧 ⟩ } βˆͺ ( π‘Ž β†Ύ ( Ο‰ βˆ– { 𝑖 } ) ) ) ∈ ( 2nd β€˜ 𝑒 ) } ) ) β†’ 𝑛 ∈ 𝒫 ( 𝑀 ↑m Ο‰ ) )
91 90 exlimiv ⊒ ( βˆƒ π‘₯ βˆƒ 𝑒 ∈ ( ( 𝑀 Sat 𝐸 ) β€˜ 𝑏 ) ( βˆƒ 𝑣 ∈ ( ( 𝑀 Sat 𝐸 ) β€˜ 𝑏 ) ( π‘₯ = ( ( 1st β€˜ 𝑒 ) βŠΌπ‘” ( 1st β€˜ 𝑣 ) ) ∧ 𝑛 = ( ( 𝑀 ↑m Ο‰ ) βˆ– ( ( 2nd β€˜ 𝑒 ) ∩ ( 2nd β€˜ 𝑣 ) ) ) ) ∨ βˆƒ 𝑖 ∈ Ο‰ ( π‘₯ = βˆ€π‘” 𝑖 ( 1st β€˜ 𝑒 ) ∧ 𝑛 = { π‘Ž ∈ ( 𝑀 ↑m Ο‰ ) ∣ βˆ€ 𝑧 ∈ 𝑀 ( { ⟨ 𝑖 , 𝑧 ⟩ } βˆͺ ( π‘Ž β†Ύ ( Ο‰ βˆ– { 𝑖 } ) ) ) ∈ ( 2nd β€˜ 𝑒 ) } ) ) β†’ 𝑛 ∈ 𝒫 ( 𝑀 ↑m Ο‰ ) )
92 91 a1i ⊒ ( ( ( 𝑏 ∈ Ο‰ ∧ ( ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ π‘Š ) β†’ ( 𝑛 ∈ ran ( ( 𝑀 Sat 𝐸 ) β€˜ 𝑏 ) β†’ 𝑛 ∈ 𝒫 ( 𝑀 ↑m Ο‰ ) ) ) ) ∧ ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ π‘Š ) ) β†’ ( βˆƒ π‘₯ βˆƒ 𝑒 ∈ ( ( 𝑀 Sat 𝐸 ) β€˜ 𝑏 ) ( βˆƒ 𝑣 ∈ ( ( 𝑀 Sat 𝐸 ) β€˜ 𝑏 ) ( π‘₯ = ( ( 1st β€˜ 𝑒 ) βŠΌπ‘” ( 1st β€˜ 𝑣 ) ) ∧ 𝑛 = ( ( 𝑀 ↑m Ο‰ ) βˆ– ( ( 2nd β€˜ 𝑒 ) ∩ ( 2nd β€˜ 𝑣 ) ) ) ) ∨ βˆƒ 𝑖 ∈ Ο‰ ( π‘₯ = βˆ€π‘” 𝑖 ( 1st β€˜ 𝑒 ) ∧ 𝑛 = { π‘Ž ∈ ( 𝑀 ↑m Ο‰ ) ∣ βˆ€ 𝑧 ∈ 𝑀 ( { ⟨ 𝑖 , 𝑧 ⟩ } βˆͺ ( π‘Ž β†Ύ ( Ο‰ βˆ– { 𝑖 } ) ) ) ∈ ( 2nd β€˜ 𝑒 ) } ) ) β†’ 𝑛 ∈ 𝒫 ( 𝑀 ↑m Ο‰ ) ) )
93 73 92 jaod ⊒ ( ( ( 𝑏 ∈ Ο‰ ∧ ( ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ π‘Š ) β†’ ( 𝑛 ∈ ran ( ( 𝑀 Sat 𝐸 ) β€˜ 𝑏 ) β†’ 𝑛 ∈ 𝒫 ( 𝑀 ↑m Ο‰ ) ) ) ) ∧ ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ π‘Š ) ) β†’ ( ( 𝑛 ∈ ran ( ( 𝑀 Sat 𝐸 ) β€˜ 𝑏 ) ∨ βˆƒ π‘₯ βˆƒ 𝑒 ∈ ( ( 𝑀 Sat 𝐸 ) β€˜ 𝑏 ) ( βˆƒ 𝑣 ∈ ( ( 𝑀 Sat 𝐸 ) β€˜ 𝑏 ) ( π‘₯ = ( ( 1st β€˜ 𝑒 ) βŠΌπ‘” ( 1st β€˜ 𝑣 ) ) ∧ 𝑛 = ( ( 𝑀 ↑m Ο‰ ) βˆ– ( ( 2nd β€˜ 𝑒 ) ∩ ( 2nd β€˜ 𝑣 ) ) ) ) ∨ βˆƒ 𝑖 ∈ Ο‰ ( π‘₯ = βˆ€π‘” 𝑖 ( 1st β€˜ 𝑒 ) ∧ 𝑛 = { π‘Ž ∈ ( 𝑀 ↑m Ο‰ ) ∣ βˆ€ 𝑧 ∈ 𝑀 ( { ⟨ 𝑖 , 𝑧 ⟩ } βˆͺ ( π‘Ž β†Ύ ( Ο‰ βˆ– { 𝑖 } ) ) ) ∈ ( 2nd β€˜ 𝑒 ) } ) ) ) β†’ 𝑛 ∈ 𝒫 ( 𝑀 ↑m Ο‰ ) ) )
94 71 93 sylbid ⊒ ( ( ( 𝑏 ∈ Ο‰ ∧ ( ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ π‘Š ) β†’ ( 𝑛 ∈ ran ( ( 𝑀 Sat 𝐸 ) β€˜ 𝑏 ) β†’ 𝑛 ∈ 𝒫 ( 𝑀 ↑m Ο‰ ) ) ) ) ∧ ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ π‘Š ) ) β†’ ( 𝑛 ∈ ran ( ( 𝑀 Sat 𝐸 ) β€˜ suc 𝑏 ) β†’ 𝑛 ∈ 𝒫 ( 𝑀 ↑m Ο‰ ) ) )
95 94 exp31 ⊒ ( 𝑏 ∈ Ο‰ β†’ ( ( ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ π‘Š ) β†’ ( 𝑛 ∈ ran ( ( 𝑀 Sat 𝐸 ) β€˜ 𝑏 ) β†’ 𝑛 ∈ 𝒫 ( 𝑀 ↑m Ο‰ ) ) ) β†’ ( ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ π‘Š ) β†’ ( 𝑛 ∈ ran ( ( 𝑀 Sat 𝐸 ) β€˜ suc 𝑏 ) β†’ 𝑛 ∈ 𝒫 ( 𝑀 ↑m Ο‰ ) ) ) ) )
96 5 10 15 20 45 95 finds ⊒ ( 𝑁 ∈ Ο‰ β†’ ( ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ π‘Š ) β†’ ( 𝑛 ∈ ran ( ( 𝑀 Sat 𝐸 ) β€˜ 𝑁 ) β†’ 𝑛 ∈ 𝒫 ( 𝑀 ↑m Ο‰ ) ) ) )
97 96 com12 ⊒ ( ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ π‘Š ) β†’ ( 𝑁 ∈ Ο‰ β†’ ( 𝑛 ∈ ran ( ( 𝑀 Sat 𝐸 ) β€˜ 𝑁 ) β†’ 𝑛 ∈ 𝒫 ( 𝑀 ↑m Ο‰ ) ) ) )
98 97 3impia ⊒ ( ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ π‘Š ∧ 𝑁 ∈ Ο‰ ) β†’ ( 𝑛 ∈ ran ( ( 𝑀 Sat 𝐸 ) β€˜ 𝑁 ) β†’ 𝑛 ∈ 𝒫 ( 𝑀 ↑m Ο‰ ) ) )
99 98 ssrdv ⊒ ( ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ π‘Š ∧ 𝑁 ∈ Ο‰ ) β†’ ran ( ( 𝑀 Sat 𝐸 ) β€˜ 𝑁 ) βŠ† 𝒫 ( 𝑀 ↑m Ο‰ ) )