Step |
Hyp |
Ref |
Expression |
1 |
|
fveq2 |
β’ ( π = β
β ( ( π Sat πΈ ) β π ) = ( ( π Sat πΈ ) β β
) ) |
2 |
1
|
rneqd |
β’ ( π = β
β ran ( ( π Sat πΈ ) β π ) = ran ( ( π Sat πΈ ) β β
) ) |
3 |
2
|
eleq2d |
β’ ( π = β
β ( π β ran ( ( π Sat πΈ ) β π ) β π β ran ( ( π Sat πΈ ) β β
) ) ) |
4 |
3
|
imbi1d |
β’ ( π = β
β ( ( π β ran ( ( π Sat πΈ ) β π ) β π β π« ( π βm Ο ) ) β ( π β ran ( ( π Sat πΈ ) β β
) β π β π« ( π βm Ο ) ) ) ) |
5 |
4
|
imbi2d |
β’ ( π = β
β ( ( ( π β π β§ πΈ β π ) β ( π β ran ( ( π Sat πΈ ) β π ) β π β π« ( π βm Ο ) ) ) β ( ( π β π β§ πΈ β π ) β ( π β ran ( ( π Sat πΈ ) β β
) β π β π« ( π βm Ο ) ) ) ) ) |
6 |
|
fveq2 |
β’ ( π = π β ( ( π Sat πΈ ) β π ) = ( ( π Sat πΈ ) β π ) ) |
7 |
6
|
rneqd |
β’ ( π = π β ran ( ( π Sat πΈ ) β π ) = ran ( ( π Sat πΈ ) β π ) ) |
8 |
7
|
eleq2d |
β’ ( π = π β ( π β ran ( ( π Sat πΈ ) β π ) β π β ran ( ( π Sat πΈ ) β π ) ) ) |
9 |
8
|
imbi1d |
β’ ( π = π β ( ( π β ran ( ( π Sat πΈ ) β π ) β π β π« ( π βm Ο ) ) β ( π β ran ( ( π Sat πΈ ) β π ) β π β π« ( π βm Ο ) ) ) ) |
10 |
9
|
imbi2d |
β’ ( π = π β ( ( ( π β π β§ πΈ β π ) β ( π β ran ( ( π Sat πΈ ) β π ) β π β π« ( π βm Ο ) ) ) β ( ( π β π β§ πΈ β π ) β ( π β ran ( ( π Sat πΈ ) β π ) β π β π« ( π βm Ο ) ) ) ) ) |
11 |
|
fveq2 |
β’ ( π = suc π β ( ( π Sat πΈ ) β π ) = ( ( π Sat πΈ ) β suc π ) ) |
12 |
11
|
rneqd |
β’ ( π = suc π β ran ( ( π Sat πΈ ) β π ) = ran ( ( π Sat πΈ ) β suc π ) ) |
13 |
12
|
eleq2d |
β’ ( π = suc π β ( π β ran ( ( π Sat πΈ ) β π ) β π β ran ( ( π Sat πΈ ) β suc π ) ) ) |
14 |
13
|
imbi1d |
β’ ( π = suc π β ( ( π β ran ( ( π Sat πΈ ) β π ) β π β π« ( π βm Ο ) ) β ( π β ran ( ( π Sat πΈ ) β suc π ) β π β π« ( π βm Ο ) ) ) ) |
15 |
14
|
imbi2d |
β’ ( π = suc π β ( ( ( π β π β§ πΈ β π ) β ( π β ran ( ( π Sat πΈ ) β π ) β π β π« ( π βm Ο ) ) ) β ( ( π β π β§ πΈ β π ) β ( π β ran ( ( π Sat πΈ ) β suc π ) β π β π« ( π βm Ο ) ) ) ) ) |
16 |
|
fveq2 |
β’ ( π = π β ( ( π Sat πΈ ) β π ) = ( ( π Sat πΈ ) β π ) ) |
17 |
16
|
rneqd |
β’ ( π = π β ran ( ( π Sat πΈ ) β π ) = ran ( ( π Sat πΈ ) β π ) ) |
18 |
17
|
eleq2d |
β’ ( π = π β ( π β ran ( ( π Sat πΈ ) β π ) β π β ran ( ( π Sat πΈ ) β π ) ) ) |
19 |
18
|
imbi1d |
β’ ( π = π β ( ( π β ran ( ( π Sat πΈ ) β π ) β π β π« ( π βm Ο ) ) β ( π β ran ( ( π Sat πΈ ) β π ) β π β π« ( π βm Ο ) ) ) ) |
20 |
19
|
imbi2d |
β’ ( π = π β ( ( ( π β π β§ πΈ β π ) β ( π β ran ( ( π Sat πΈ ) β π ) β π β π« ( π βm Ο ) ) ) β ( ( π β π β§ πΈ β π ) β ( π β ran ( ( π Sat πΈ ) β π ) β π β π« ( π βm Ο ) ) ) ) ) |
21 |
|
eqid |
β’ ( π Sat πΈ ) = ( π Sat πΈ ) |
22 |
21
|
satfv0 |
β’ ( ( π β π β§ πΈ β π ) β ( ( π Sat πΈ ) β β
) = { β¨ π₯ , π¦ β© β£ β π β Ο β π β Ο ( π₯ = ( π βπ π ) β§ π¦ = { π β ( π βm Ο ) β£ ( π β π ) πΈ ( π β π ) } ) } ) |
23 |
22
|
rneqd |
β’ ( ( π β π β§ πΈ β π ) β ran ( ( π Sat πΈ ) β β
) = ran { β¨ π₯ , π¦ β© β£ β π β Ο β π β Ο ( π₯ = ( π βπ π ) β§ π¦ = { π β ( π βm Ο ) β£ ( π β π ) πΈ ( π β π ) } ) } ) |
24 |
23
|
eleq2d |
β’ ( ( π β π β§ πΈ β π ) β ( π β ran ( ( π Sat πΈ ) β β
) β π β ran { β¨ π₯ , π¦ β© β£ β π β Ο β π β Ο ( π₯ = ( π βπ π ) β§ π¦ = { π β ( π βm Ο ) β£ ( π β π ) πΈ ( π β π ) } ) } ) ) |
25 |
|
rnopab |
β’ ran { β¨ π₯ , π¦ β© β£ β π β Ο β π β Ο ( π₯ = ( π βπ π ) β§ π¦ = { π β ( π βm Ο ) β£ ( π β π ) πΈ ( π β π ) } ) } = { π¦ β£ β π₯ β π β Ο β π β Ο ( π₯ = ( π βπ π ) β§ π¦ = { π β ( π βm Ο ) β£ ( π β π ) πΈ ( π β π ) } ) } |
26 |
25
|
eleq2i |
β’ ( π β ran { β¨ π₯ , π¦ β© β£ β π β Ο β π β Ο ( π₯ = ( π βπ π ) β§ π¦ = { π β ( π βm Ο ) β£ ( π β π ) πΈ ( π β π ) } ) } β π β { π¦ β£ β π₯ β π β Ο β π β Ο ( π₯ = ( π βπ π ) β§ π¦ = { π β ( π βm Ο ) β£ ( π β π ) πΈ ( π β π ) } ) } ) |
27 |
|
vex |
β’ π β V |
28 |
|
eqeq1 |
β’ ( π¦ = π β ( π¦ = { π β ( π βm Ο ) β£ ( π β π ) πΈ ( π β π ) } β π = { π β ( π βm Ο ) β£ ( π β π ) πΈ ( π β π ) } ) ) |
29 |
28
|
anbi2d |
β’ ( π¦ = π β ( ( π₯ = ( π βπ π ) β§ π¦ = { π β ( π βm Ο ) β£ ( π β π ) πΈ ( π β π ) } ) β ( π₯ = ( π βπ π ) β§ π = { π β ( π βm Ο ) β£ ( π β π ) πΈ ( π β π ) } ) ) ) |
30 |
29
|
2rexbidv |
β’ ( π¦ = π β ( β π β Ο β π β Ο ( π₯ = ( π βπ π ) β§ π¦ = { π β ( π βm Ο ) β£ ( π β π ) πΈ ( π β π ) } ) β β π β Ο β π β Ο ( π₯ = ( π βπ π ) β§ π = { π β ( π βm Ο ) β£ ( π β π ) πΈ ( π β π ) } ) ) ) |
31 |
30
|
exbidv |
β’ ( π¦ = π β ( β π₯ β π β Ο β π β Ο ( π₯ = ( π βπ π ) β§ π¦ = { π β ( π βm Ο ) β£ ( π β π ) πΈ ( π β π ) } ) β β π₯ β π β Ο β π β Ο ( π₯ = ( π βπ π ) β§ π = { π β ( π βm Ο ) β£ ( π β π ) πΈ ( π β π ) } ) ) ) |
32 |
27 31
|
elab |
β’ ( π β { π¦ β£ β π₯ β π β Ο β π β Ο ( π₯ = ( π βπ π ) β§ π¦ = { π β ( π βm Ο ) β£ ( π β π ) πΈ ( π β π ) } ) } β β π₯ β π β Ο β π β Ο ( π₯ = ( π βπ π ) β§ π = { π β ( π βm Ο ) β£ ( π β π ) πΈ ( π β π ) } ) ) |
33 |
|
ovex |
β’ ( π βm Ο ) β V |
34 |
|
ssrab2 |
β’ { π β ( π βm Ο ) β£ ( π β π ) πΈ ( π β π ) } β ( π βm Ο ) |
35 |
33 34
|
elpwi2 |
β’ { π β ( π βm Ο ) β£ ( π β π ) πΈ ( π β π ) } β π« ( π βm Ο ) |
36 |
|
eleq1 |
β’ ( π = { π β ( π βm Ο ) β£ ( π β π ) πΈ ( π β π ) } β ( π β π« ( π βm Ο ) β { π β ( π βm Ο ) β£ ( π β π ) πΈ ( π β π ) } β π« ( π βm Ο ) ) ) |
37 |
35 36
|
mpbiri |
β’ ( π = { π β ( π βm Ο ) β£ ( π β π ) πΈ ( π β π ) } β π β π« ( π βm Ο ) ) |
38 |
37
|
adantl |
β’ ( ( π₯ = ( π βπ π ) β§ π = { π β ( π βm Ο ) β£ ( π β π ) πΈ ( π β π ) } ) β π β π« ( π βm Ο ) ) |
39 |
38
|
a1i |
β’ ( ( π β Ο β§ π β Ο ) β ( ( π₯ = ( π βπ π ) β§ π = { π β ( π βm Ο ) β£ ( π β π ) πΈ ( π β π ) } ) β π β π« ( π βm Ο ) ) ) |
40 |
39
|
rexlimivv |
β’ ( β π β Ο β π β Ο ( π₯ = ( π βπ π ) β§ π = { π β ( π βm Ο ) β£ ( π β π ) πΈ ( π β π ) } ) β π β π« ( π βm Ο ) ) |
41 |
40
|
exlimiv |
β’ ( β π₯ β π β Ο β π β Ο ( π₯ = ( π βπ π ) β§ π = { π β ( π βm Ο ) β£ ( π β π ) πΈ ( π β π ) } ) β π β π« ( π βm Ο ) ) |
42 |
32 41
|
sylbi |
β’ ( π β { π¦ β£ β π₯ β π β Ο β π β Ο ( π₯ = ( π βπ π ) β§ π¦ = { π β ( π βm Ο ) β£ ( π β π ) πΈ ( π β π ) } ) } β π β π« ( π βm Ο ) ) |
43 |
42
|
a1i |
β’ ( ( π β π β§ πΈ β π ) β ( π β { π¦ β£ β π₯ β π β Ο β π β Ο ( π₯ = ( π βπ π ) β§ π¦ = { π β ( π βm Ο ) β£ ( π β π ) πΈ ( π β π ) } ) } β π β π« ( π βm Ο ) ) ) |
44 |
26 43
|
biimtrid |
β’ ( ( π β π β§ πΈ β π ) β ( π β ran { β¨ π₯ , π¦ β© β£ β π β Ο β π β Ο ( π₯ = ( π βπ π ) β§ π¦ = { π β ( π βm Ο ) β£ ( π β π ) πΈ ( π β π ) } ) } β π β π« ( π βm Ο ) ) ) |
45 |
24 44
|
sylbid |
β’ ( ( π β π β§ πΈ β π ) β ( π β ran ( ( π Sat πΈ ) β β
) β π β π« ( π βm Ο ) ) ) |
46 |
21
|
satfvsuc |
β’ ( ( π β π β§ πΈ β π β§ π β Ο ) β ( ( π Sat πΈ ) β suc π ) = ( ( ( π Sat πΈ ) β π ) βͺ { β¨ π₯ , π¦ β© β£ β π’ β ( ( π Sat πΈ ) β π ) ( β π£ β ( ( π Sat πΈ ) β π ) ( π₯ = ( ( 1st β π’ ) βΌπ ( 1st β π£ ) ) β§ π¦ = ( ( π βm Ο ) β ( ( 2nd β π’ ) β© ( 2nd β π£ ) ) ) ) β¨ β π β Ο ( π₯ = βπ π ( 1st β π’ ) β§ π¦ = { π β ( π βm Ο ) β£ β π§ β π ( { β¨ π , π§ β© } βͺ ( π βΎ ( Ο β { π } ) ) ) β ( 2nd β π’ ) } ) ) } ) ) |
47 |
46
|
3expa |
β’ ( ( ( π β π β§ πΈ β π ) β§ π β Ο ) β ( ( π Sat πΈ ) β suc π ) = ( ( ( π Sat πΈ ) β π ) βͺ { β¨ π₯ , π¦ β© β£ β π’ β ( ( π Sat πΈ ) β π ) ( β π£ β ( ( π Sat πΈ ) β π ) ( π₯ = ( ( 1st β π’ ) βΌπ ( 1st β π£ ) ) β§ π¦ = ( ( π βm Ο ) β ( ( 2nd β π’ ) β© ( 2nd β π£ ) ) ) ) β¨ β π β Ο ( π₯ = βπ π ( 1st β π’ ) β§ π¦ = { π β ( π βm Ο ) β£ β π§ β π ( { β¨ π , π§ β© } βͺ ( π βΎ ( Ο β { π } ) ) ) β ( 2nd β π’ ) } ) ) } ) ) |
48 |
47
|
rneqd |
β’ ( ( ( π β π β§ πΈ β π ) β§ π β Ο ) β ran ( ( π Sat πΈ ) β suc π ) = ran ( ( ( π Sat πΈ ) β π ) βͺ { β¨ π₯ , π¦ β© β£ β π’ β ( ( π Sat πΈ ) β π ) ( β π£ β ( ( π Sat πΈ ) β π ) ( π₯ = ( ( 1st β π’ ) βΌπ ( 1st β π£ ) ) β§ π¦ = ( ( π βm Ο ) β ( ( 2nd β π’ ) β© ( 2nd β π£ ) ) ) ) β¨ β π β Ο ( π₯ = βπ π ( 1st β π’ ) β§ π¦ = { π β ( π βm Ο ) β£ β π§ β π ( { β¨ π , π§ β© } βͺ ( π βΎ ( Ο β { π } ) ) ) β ( 2nd β π’ ) } ) ) } ) ) |
49 |
|
rnun |
β’ ran ( ( ( π Sat πΈ ) β π ) βͺ { β¨ π₯ , π¦ β© β£ β π’ β ( ( π Sat πΈ ) β π ) ( β π£ β ( ( π Sat πΈ ) β π ) ( π₯ = ( ( 1st β π’ ) βΌπ ( 1st β π£ ) ) β§ π¦ = ( ( π βm Ο ) β ( ( 2nd β π’ ) β© ( 2nd β π£ ) ) ) ) β¨ β π β Ο ( π₯ = βπ π ( 1st β π’ ) β§ π¦ = { π β ( π βm Ο ) β£ β π§ β π ( { β¨ π , π§ β© } βͺ ( π βΎ ( Ο β { π } ) ) ) β ( 2nd β π’ ) } ) ) } ) = ( ran ( ( π Sat πΈ ) β π ) βͺ ran { β¨ π₯ , π¦ β© β£ β π’ β ( ( π Sat πΈ ) β π ) ( β π£ β ( ( π Sat πΈ ) β π ) ( π₯ = ( ( 1st β π’ ) βΌπ ( 1st β π£ ) ) β§ π¦ = ( ( π βm Ο ) β ( ( 2nd β π’ ) β© ( 2nd β π£ ) ) ) ) β¨ β π β Ο ( π₯ = βπ π ( 1st β π’ ) β§ π¦ = { π β ( π βm Ο ) β£ β π§ β π ( { β¨ π , π§ β© } βͺ ( π βΎ ( Ο β { π } ) ) ) β ( 2nd β π’ ) } ) ) } ) |
50 |
48 49
|
eqtrdi |
β’ ( ( ( π β π β§ πΈ β π ) β§ π β Ο ) β ran ( ( π Sat πΈ ) β suc π ) = ( ran ( ( π Sat πΈ ) β π ) βͺ ran { β¨ π₯ , π¦ β© β£ β π’ β ( ( π Sat πΈ ) β π ) ( β π£ β ( ( π Sat πΈ ) β π ) ( π₯ = ( ( 1st β π’ ) βΌπ ( 1st β π£ ) ) β§ π¦ = ( ( π βm Ο ) β ( ( 2nd β π’ ) β© ( 2nd β π£ ) ) ) ) β¨ β π β Ο ( π₯ = βπ π ( 1st β π’ ) β§ π¦ = { π β ( π βm Ο ) β£ β π§ β π ( { β¨ π , π§ β© } βͺ ( π βΎ ( Ο β { π } ) ) ) β ( 2nd β π’ ) } ) ) } ) ) |
51 |
50
|
eleq2d |
β’ ( ( ( π β π β§ πΈ β π ) β§ π β Ο ) β ( π β ran ( ( π Sat πΈ ) β suc π ) β π β ( ran ( ( π Sat πΈ ) β π ) βͺ ran { β¨ π₯ , π¦ β© β£ β π’ β ( ( π Sat πΈ ) β π ) ( β π£ β ( ( π Sat πΈ ) β π ) ( π₯ = ( ( 1st β π’ ) βΌπ ( 1st β π£ ) ) β§ π¦ = ( ( π βm Ο ) β ( ( 2nd β π’ ) β© ( 2nd β π£ ) ) ) ) β¨ β π β Ο ( π₯ = βπ π ( 1st β π’ ) β§ π¦ = { π β ( π βm Ο ) β£ β π§ β π ( { β¨ π , π§ β© } βͺ ( π βΎ ( Ο β { π } ) ) ) β ( 2nd β π’ ) } ) ) } ) ) ) |
52 |
|
elun |
β’ ( π β ( ran ( ( π Sat πΈ ) β π ) βͺ ran { β¨ π₯ , π¦ β© β£ β π’ β ( ( π Sat πΈ ) β π ) ( β π£ β ( ( π Sat πΈ ) β π ) ( π₯ = ( ( 1st β π’ ) βΌπ ( 1st β π£ ) ) β§ π¦ = ( ( π βm Ο ) β ( ( 2nd β π’ ) β© ( 2nd β π£ ) ) ) ) β¨ β π β Ο ( π₯ = βπ π ( 1st β π’ ) β§ π¦ = { π β ( π βm Ο ) β£ β π§ β π ( { β¨ π , π§ β© } βͺ ( π βΎ ( Ο β { π } ) ) ) β ( 2nd β π’ ) } ) ) } ) β ( π β ran ( ( π Sat πΈ ) β π ) β¨ π β ran { β¨ π₯ , π¦ β© β£ β π’ β ( ( π Sat πΈ ) β π ) ( β π£ β ( ( π Sat πΈ ) β π ) ( π₯ = ( ( 1st β π’ ) βΌπ ( 1st β π£ ) ) β§ π¦ = ( ( π βm Ο ) β ( ( 2nd β π’ ) β© ( 2nd β π£ ) ) ) ) β¨ β π β Ο ( π₯ = βπ π ( 1st β π’ ) β§ π¦ = { π β ( π βm Ο ) β£ β π§ β π ( { β¨ π , π§ β© } βͺ ( π βΎ ( Ο β { π } ) ) ) β ( 2nd β π’ ) } ) ) } ) ) |
53 |
|
rnopab |
β’ ran { β¨ π₯ , π¦ β© β£ β π’ β ( ( π Sat πΈ ) β π ) ( β π£ β ( ( π Sat πΈ ) β π ) ( π₯ = ( ( 1st β π’ ) βΌπ ( 1st β π£ ) ) β§ π¦ = ( ( π βm Ο ) β ( ( 2nd β π’ ) β© ( 2nd β π£ ) ) ) ) β¨ β π β Ο ( π₯ = βπ π ( 1st β π’ ) β§ π¦ = { π β ( π βm Ο ) β£ β π§ β π ( { β¨ π , π§ β© } βͺ ( π βΎ ( Ο β { π } ) ) ) β ( 2nd β π’ ) } ) ) } = { π¦ β£ β π₯ β π’ β ( ( π Sat πΈ ) β π ) ( β π£ β ( ( π Sat πΈ ) β π ) ( π₯ = ( ( 1st β π’ ) βΌπ ( 1st β π£ ) ) β§ π¦ = ( ( π βm Ο ) β ( ( 2nd β π’ ) β© ( 2nd β π£ ) ) ) ) β¨ β π β Ο ( π₯ = βπ π ( 1st β π’ ) β§ π¦ = { π β ( π βm Ο ) β£ β π§ β π ( { β¨ π , π§ β© } βͺ ( π βΎ ( Ο β { π } ) ) ) β ( 2nd β π’ ) } ) ) } |
54 |
53
|
eleq2i |
β’ ( π β ran { β¨ π₯ , π¦ β© β£ β π’ β ( ( π Sat πΈ ) β π ) ( β π£ β ( ( π Sat πΈ ) β π ) ( π₯ = ( ( 1st β π’ ) βΌπ ( 1st β π£ ) ) β§ π¦ = ( ( π βm Ο ) β ( ( 2nd β π’ ) β© ( 2nd β π£ ) ) ) ) β¨ β π β Ο ( π₯ = βπ π ( 1st β π’ ) β§ π¦ = { π β ( π βm Ο ) β£ β π§ β π ( { β¨ π , π§ β© } βͺ ( π βΎ ( Ο β { π } ) ) ) β ( 2nd β π’ ) } ) ) } β π β { π¦ β£ β π₯ β π’ β ( ( π Sat πΈ ) β π ) ( β π£ β ( ( π Sat πΈ ) β π ) ( π₯ = ( ( 1st β π’ ) βΌπ ( 1st β π£ ) ) β§ π¦ = ( ( π βm Ο ) β ( ( 2nd β π’ ) β© ( 2nd β π£ ) ) ) ) β¨ β π β Ο ( π₯ = βπ π ( 1st β π’ ) β§ π¦ = { π β ( π βm Ο ) β£ β π§ β π ( { β¨ π , π§ β© } βͺ ( π βΎ ( Ο β { π } ) ) ) β ( 2nd β π’ ) } ) ) } ) |
55 |
|
eqeq1 |
β’ ( π¦ = π β ( π¦ = ( ( π βm Ο ) β ( ( 2nd β π’ ) β© ( 2nd β π£ ) ) ) β π = ( ( π βm Ο ) β ( ( 2nd β π’ ) β© ( 2nd β π£ ) ) ) ) ) |
56 |
55
|
anbi2d |
β’ ( π¦ = π β ( ( π₯ = ( ( 1st β π’ ) βΌπ ( 1st β π£ ) ) β§ π¦ = ( ( π βm Ο ) β ( ( 2nd β π’ ) β© ( 2nd β π£ ) ) ) ) β ( π₯ = ( ( 1st β π’ ) βΌπ ( 1st β π£ ) ) β§ π = ( ( π βm Ο ) β ( ( 2nd β π’ ) β© ( 2nd β π£ ) ) ) ) ) ) |
57 |
56
|
rexbidv |
β’ ( π¦ = π β ( β π£ β ( ( π Sat πΈ ) β π ) ( π₯ = ( ( 1st β π’ ) βΌπ ( 1st β π£ ) ) β§ π¦ = ( ( π βm Ο ) β ( ( 2nd β π’ ) β© ( 2nd β π£ ) ) ) ) β β π£ β ( ( π Sat πΈ ) β π ) ( π₯ = ( ( 1st β π’ ) βΌπ ( 1st β π£ ) ) β§ π = ( ( π βm Ο ) β ( ( 2nd β π’ ) β© ( 2nd β π£ ) ) ) ) ) ) |
58 |
|
eqeq1 |
β’ ( π¦ = π β ( π¦ = { π β ( π βm Ο ) β£ β π§ β π ( { β¨ π , π§ β© } βͺ ( π βΎ ( Ο β { π } ) ) ) β ( 2nd β π’ ) } β π = { π β ( π βm Ο ) β£ β π§ β π ( { β¨ π , π§ β© } βͺ ( π βΎ ( Ο β { π } ) ) ) β ( 2nd β π’ ) } ) ) |
59 |
58
|
anbi2d |
β’ ( π¦ = π β ( ( π₯ = βπ π ( 1st β π’ ) β§ π¦ = { π β ( π βm Ο ) β£ β π§ β π ( { β¨ π , π§ β© } βͺ ( π βΎ ( Ο β { π } ) ) ) β ( 2nd β π’ ) } ) β ( π₯ = βπ π ( 1st β π’ ) β§ π = { π β ( π βm Ο ) β£ β π§ β π ( { β¨ π , π§ β© } βͺ ( π βΎ ( Ο β { π } ) ) ) β ( 2nd β π’ ) } ) ) ) |
60 |
59
|
rexbidv |
β’ ( π¦ = π β ( β π β Ο ( π₯ = βπ π ( 1st β π’ ) β§ π¦ = { π β ( π βm Ο ) β£ β π§ β π ( { β¨ π , π§ β© } βͺ ( π βΎ ( Ο β { π } ) ) ) β ( 2nd β π’ ) } ) β β π β Ο ( π₯ = βπ π ( 1st β π’ ) β§ π = { π β ( π βm Ο ) β£ β π§ β π ( { β¨ π , π§ β© } βͺ ( π βΎ ( Ο β { π } ) ) ) β ( 2nd β π’ ) } ) ) ) |
61 |
57 60
|
orbi12d |
β’ ( π¦ = π β ( ( β π£ β ( ( π Sat πΈ ) β π ) ( π₯ = ( ( 1st β π’ ) βΌπ ( 1st β π£ ) ) β§ π¦ = ( ( π βm Ο ) β ( ( 2nd β π’ ) β© ( 2nd β π£ ) ) ) ) β¨ β π β Ο ( π₯ = βπ π ( 1st β π’ ) β§ π¦ = { π β ( π βm Ο ) β£ β π§ β π ( { β¨ π , π§ β© } βͺ ( π βΎ ( Ο β { π } ) ) ) β ( 2nd β π’ ) } ) ) β ( β π£ β ( ( π Sat πΈ ) β π ) ( π₯ = ( ( 1st β π’ ) βΌπ ( 1st β π£ ) ) β§ π = ( ( π βm Ο ) β ( ( 2nd β π’ ) β© ( 2nd β π£ ) ) ) ) β¨ β π β Ο ( π₯ = βπ π ( 1st β π’ ) β§ π = { π β ( π βm Ο ) β£ β π§ β π ( { β¨ π , π§ β© } βͺ ( π βΎ ( Ο β { π } ) ) ) β ( 2nd β π’ ) } ) ) ) ) |
62 |
61
|
rexbidv |
β’ ( π¦ = π β ( β π’ β ( ( π Sat πΈ ) β π ) ( β π£ β ( ( π Sat πΈ ) β π ) ( π₯ = ( ( 1st β π’ ) βΌπ ( 1st β π£ ) ) β§ π¦ = ( ( π βm Ο ) β ( ( 2nd β π’ ) β© ( 2nd β π£ ) ) ) ) β¨ β π β Ο ( π₯ = βπ π ( 1st β π’ ) β§ π¦ = { π β ( π βm Ο ) β£ β π§ β π ( { β¨ π , π§ β© } βͺ ( π βΎ ( Ο β { π } ) ) ) β ( 2nd β π’ ) } ) ) β β π’ β ( ( π Sat πΈ ) β π ) ( β π£ β ( ( π Sat πΈ ) β π ) ( π₯ = ( ( 1st β π’ ) βΌπ ( 1st β π£ ) ) β§ π = ( ( π βm Ο ) β ( ( 2nd β π’ ) β© ( 2nd β π£ ) ) ) ) β¨ β π β Ο ( π₯ = βπ π ( 1st β π’ ) β§ π = { π β ( π βm Ο ) β£ β π§ β π ( { β¨ π , π§ β© } βͺ ( π βΎ ( Ο β { π } ) ) ) β ( 2nd β π’ ) } ) ) ) ) |
63 |
62
|
exbidv |
β’ ( π¦ = π β ( β π₯ β π’ β ( ( π Sat πΈ ) β π ) ( β π£ β ( ( π Sat πΈ ) β π ) ( π₯ = ( ( 1st β π’ ) βΌπ ( 1st β π£ ) ) β§ π¦ = ( ( π βm Ο ) β ( ( 2nd β π’ ) β© ( 2nd β π£ ) ) ) ) β¨ β π β Ο ( π₯ = βπ π ( 1st β π’ ) β§ π¦ = { π β ( π βm Ο ) β£ β π§ β π ( { β¨ π , π§ β© } βͺ ( π βΎ ( Ο β { π } ) ) ) β ( 2nd β π’ ) } ) ) β β π₯ β π’ β ( ( π Sat πΈ ) β π ) ( β π£ β ( ( π Sat πΈ ) β π ) ( π₯ = ( ( 1st β π’ ) βΌπ ( 1st β π£ ) ) β§ π = ( ( π βm Ο ) β ( ( 2nd β π’ ) β© ( 2nd β π£ ) ) ) ) β¨ β π β Ο ( π₯ = βπ π ( 1st β π’ ) β§ π = { π β ( π βm Ο ) β£ β π§ β π ( { β¨ π , π§ β© } βͺ ( π βΎ ( Ο β { π } ) ) ) β ( 2nd β π’ ) } ) ) ) ) |
64 |
27 63
|
elab |
β’ ( π β { π¦ β£ β π₯ β π’ β ( ( π Sat πΈ ) β π ) ( β π£ β ( ( π Sat πΈ ) β π ) ( π₯ = ( ( 1st β π’ ) βΌπ ( 1st β π£ ) ) β§ π¦ = ( ( π βm Ο ) β ( ( 2nd β π’ ) β© ( 2nd β π£ ) ) ) ) β¨ β π β Ο ( π₯ = βπ π ( 1st β π’ ) β§ π¦ = { π β ( π βm Ο ) β£ β π§ β π ( { β¨ π , π§ β© } βͺ ( π βΎ ( Ο β { π } ) ) ) β ( 2nd β π’ ) } ) ) } β β π₯ β π’ β ( ( π Sat πΈ ) β π ) ( β π£ β ( ( π Sat πΈ ) β π ) ( π₯ = ( ( 1st β π’ ) βΌπ ( 1st β π£ ) ) β§ π = ( ( π βm Ο ) β ( ( 2nd β π’ ) β© ( 2nd β π£ ) ) ) ) β¨ β π β Ο ( π₯ = βπ π ( 1st β π’ ) β§ π = { π β ( π βm Ο ) β£ β π§ β π ( { β¨ π , π§ β© } βͺ ( π βΎ ( Ο β { π } ) ) ) β ( 2nd β π’ ) } ) ) ) |
65 |
54 64
|
bitri |
β’ ( π β ran { β¨ π₯ , π¦ β© β£ β π’ β ( ( π Sat πΈ ) β π ) ( β π£ β ( ( π Sat πΈ ) β π ) ( π₯ = ( ( 1st β π’ ) βΌπ ( 1st β π£ ) ) β§ π¦ = ( ( π βm Ο ) β ( ( 2nd β π’ ) β© ( 2nd β π£ ) ) ) ) β¨ β π β Ο ( π₯ = βπ π ( 1st β π’ ) β§ π¦ = { π β ( π βm Ο ) β£ β π§ β π ( { β¨ π , π§ β© } βͺ ( π βΎ ( Ο β { π } ) ) ) β ( 2nd β π’ ) } ) ) } β β π₯ β π’ β ( ( π Sat πΈ ) β π ) ( β π£ β ( ( π Sat πΈ ) β π ) ( π₯ = ( ( 1st β π’ ) βΌπ ( 1st β π£ ) ) β§ π = ( ( π βm Ο ) β ( ( 2nd β π’ ) β© ( 2nd β π£ ) ) ) ) β¨ β π β Ο ( π₯ = βπ π ( 1st β π’ ) β§ π = { π β ( π βm Ο ) β£ β π§ β π ( { β¨ π , π§ β© } βͺ ( π βΎ ( Ο β { π } ) ) ) β ( 2nd β π’ ) } ) ) ) |
66 |
65
|
orbi2i |
β’ ( ( π β ran ( ( π Sat πΈ ) β π ) β¨ π β ran { β¨ π₯ , π¦ β© β£ β π’ β ( ( π Sat πΈ ) β π ) ( β π£ β ( ( π Sat πΈ ) β π ) ( π₯ = ( ( 1st β π’ ) βΌπ ( 1st β π£ ) ) β§ π¦ = ( ( π βm Ο ) β ( ( 2nd β π’ ) β© ( 2nd β π£ ) ) ) ) β¨ β π β Ο ( π₯ = βπ π ( 1st β π’ ) β§ π¦ = { π β ( π βm Ο ) β£ β π§ β π ( { β¨ π , π§ β© } βͺ ( π βΎ ( Ο β { π } ) ) ) β ( 2nd β π’ ) } ) ) } ) β ( π β ran ( ( π Sat πΈ ) β π ) β¨ β π₯ β π’ β ( ( π Sat πΈ ) β π ) ( β π£ β ( ( π Sat πΈ ) β π ) ( π₯ = ( ( 1st β π’ ) βΌπ ( 1st β π£ ) ) β§ π = ( ( π βm Ο ) β ( ( 2nd β π’ ) β© ( 2nd β π£ ) ) ) ) β¨ β π β Ο ( π₯ = βπ π ( 1st β π’ ) β§ π = { π β ( π βm Ο ) β£ β π§ β π ( { β¨ π , π§ β© } βͺ ( π βΎ ( Ο β { π } ) ) ) β ( 2nd β π’ ) } ) ) ) ) |
67 |
52 66
|
bitri |
β’ ( π β ( ran ( ( π Sat πΈ ) β π ) βͺ ran { β¨ π₯ , π¦ β© β£ β π’ β ( ( π Sat πΈ ) β π ) ( β π£ β ( ( π Sat πΈ ) β π ) ( π₯ = ( ( 1st β π’ ) βΌπ ( 1st β π£ ) ) β§ π¦ = ( ( π βm Ο ) β ( ( 2nd β π’ ) β© ( 2nd β π£ ) ) ) ) β¨ β π β Ο ( π₯ = βπ π ( 1st β π’ ) β§ π¦ = { π β ( π βm Ο ) β£ β π§ β π ( { β¨ π , π§ β© } βͺ ( π βΎ ( Ο β { π } ) ) ) β ( 2nd β π’ ) } ) ) } ) β ( π β ran ( ( π Sat πΈ ) β π ) β¨ β π₯ β π’ β ( ( π Sat πΈ ) β π ) ( β π£ β ( ( π Sat πΈ ) β π ) ( π₯ = ( ( 1st β π’ ) βΌπ ( 1st β π£ ) ) β§ π = ( ( π βm Ο ) β ( ( 2nd β π’ ) β© ( 2nd β π£ ) ) ) ) β¨ β π β Ο ( π₯ = βπ π ( 1st β π’ ) β§ π = { π β ( π βm Ο ) β£ β π§ β π ( { β¨ π , π§ β© } βͺ ( π βΎ ( Ο β { π } ) ) ) β ( 2nd β π’ ) } ) ) ) ) |
68 |
51 67
|
bitrdi |
β’ ( ( ( π β π β§ πΈ β π ) β§ π β Ο ) β ( π β ran ( ( π Sat πΈ ) β suc π ) β ( π β ran ( ( π Sat πΈ ) β π ) β¨ β π₯ β π’ β ( ( π Sat πΈ ) β π ) ( β π£ β ( ( π Sat πΈ ) β π ) ( π₯ = ( ( 1st β π’ ) βΌπ ( 1st β π£ ) ) β§ π = ( ( π βm Ο ) β ( ( 2nd β π’ ) β© ( 2nd β π£ ) ) ) ) β¨ β π β Ο ( π₯ = βπ π ( 1st β π’ ) β§ π = { π β ( π βm Ο ) β£ β π§ β π ( { β¨ π , π§ β© } βͺ ( π βΎ ( Ο β { π } ) ) ) β ( 2nd β π’ ) } ) ) ) ) ) |
69 |
68
|
expcom |
β’ ( π β Ο β ( ( π β π β§ πΈ β π ) β ( π β ran ( ( π Sat πΈ ) β suc π ) β ( π β ran ( ( π Sat πΈ ) β π ) β¨ β π₯ β π’ β ( ( π Sat πΈ ) β π ) ( β π£ β ( ( π Sat πΈ ) β π ) ( π₯ = ( ( 1st β π’ ) βΌπ ( 1st β π£ ) ) β§ π = ( ( π βm Ο ) β ( ( 2nd β π’ ) β© ( 2nd β π£ ) ) ) ) β¨ β π β Ο ( π₯ = βπ π ( 1st β π’ ) β§ π = { π β ( π βm Ο ) β£ β π§ β π ( { β¨ π , π§ β© } βͺ ( π βΎ ( Ο β { π } ) ) ) β ( 2nd β π’ ) } ) ) ) ) ) ) |
70 |
69
|
adantr |
β’ ( ( π β Ο β§ ( ( π β π β§ πΈ β π ) β ( π β ran ( ( π Sat πΈ ) β π ) β π β π« ( π βm Ο ) ) ) ) β ( ( π β π β§ πΈ β π ) β ( π β ran ( ( π Sat πΈ ) β suc π ) β ( π β ran ( ( π Sat πΈ ) β π ) β¨ β π₯ β π’ β ( ( π Sat πΈ ) β π ) ( β π£ β ( ( π Sat πΈ ) β π ) ( π₯ = ( ( 1st β π’ ) βΌπ ( 1st β π£ ) ) β§ π = ( ( π βm Ο ) β ( ( 2nd β π’ ) β© ( 2nd β π£ ) ) ) ) β¨ β π β Ο ( π₯ = βπ π ( 1st β π’ ) β§ π = { π β ( π βm Ο ) β£ β π§ β π ( { β¨ π , π§ β© } βͺ ( π βΎ ( Ο β { π } ) ) ) β ( 2nd β π’ ) } ) ) ) ) ) ) |
71 |
70
|
imp |
β’ ( ( ( π β Ο β§ ( ( π β π β§ πΈ β π ) β ( π β ran ( ( π Sat πΈ ) β π ) β π β π« ( π βm Ο ) ) ) ) β§ ( π β π β§ πΈ β π ) ) β ( π β ran ( ( π Sat πΈ ) β suc π ) β ( π β ran ( ( π Sat πΈ ) β π ) β¨ β π₯ β π’ β ( ( π Sat πΈ ) β π ) ( β π£ β ( ( π Sat πΈ ) β π ) ( π₯ = ( ( 1st β π’ ) βΌπ ( 1st β π£ ) ) β§ π = ( ( π βm Ο ) β ( ( 2nd β π’ ) β© ( 2nd β π£ ) ) ) ) β¨ β π β Ο ( π₯ = βπ π ( 1st β π’ ) β§ π = { π β ( π βm Ο ) β£ β π§ β π ( { β¨ π , π§ β© } βͺ ( π βΎ ( Ο β { π } ) ) ) β ( 2nd β π’ ) } ) ) ) ) ) |
72 |
|
simpr |
β’ ( ( π β Ο β§ ( ( π β π β§ πΈ β π ) β ( π β ran ( ( π Sat πΈ ) β π ) β π β π« ( π βm Ο ) ) ) ) β ( ( π β π β§ πΈ β π ) β ( π β ran ( ( π Sat πΈ ) β π ) β π β π« ( π βm Ο ) ) ) ) |
73 |
72
|
imp |
β’ ( ( ( π β Ο β§ ( ( π β π β§ πΈ β π ) β ( π β ran ( ( π Sat πΈ ) β π ) β π β π« ( π βm Ο ) ) ) ) β§ ( π β π β§ πΈ β π ) ) β ( π β ran ( ( π Sat πΈ ) β π ) β π β π« ( π βm Ο ) ) ) |
74 |
|
difss |
β’ ( ( π βm Ο ) β ( ( 2nd β π’ ) β© ( 2nd β π£ ) ) ) β ( π βm Ο ) |
75 |
33 74
|
elpwi2 |
β’ ( ( π βm Ο ) β ( ( 2nd β π’ ) β© ( 2nd β π£ ) ) ) β π« ( π βm Ο ) |
76 |
|
eleq1 |
β’ ( π = ( ( π βm Ο ) β ( ( 2nd β π’ ) β© ( 2nd β π£ ) ) ) β ( π β π« ( π βm Ο ) β ( ( π βm Ο ) β ( ( 2nd β π’ ) β© ( 2nd β π£ ) ) ) β π« ( π βm Ο ) ) ) |
77 |
75 76
|
mpbiri |
β’ ( π = ( ( π βm Ο ) β ( ( 2nd β π’ ) β© ( 2nd β π£ ) ) ) β π β π« ( π βm Ο ) ) |
78 |
77
|
adantl |
β’ ( ( π₯ = ( ( 1st β π’ ) βΌπ ( 1st β π£ ) ) β§ π = ( ( π βm Ο ) β ( ( 2nd β π’ ) β© ( 2nd β π£ ) ) ) ) β π β π« ( π βm Ο ) ) |
79 |
78
|
adantl |
β’ ( ( π£ β ( ( π Sat πΈ ) β π ) β§ ( π₯ = ( ( 1st β π’ ) βΌπ ( 1st β π£ ) ) β§ π = ( ( π βm Ο ) β ( ( 2nd β π’ ) β© ( 2nd β π£ ) ) ) ) ) β π β π« ( π βm Ο ) ) |
80 |
79
|
rexlimiva |
β’ ( β π£ β ( ( π Sat πΈ ) β π ) ( π₯ = ( ( 1st β π’ ) βΌπ ( 1st β π£ ) ) β§ π = ( ( π βm Ο ) β ( ( 2nd β π’ ) β© ( 2nd β π£ ) ) ) ) β π β π« ( π βm Ο ) ) |
81 |
|
ssrab2 |
β’ { π β ( π βm Ο ) β£ β π§ β π ( { β¨ π , π§ β© } βͺ ( π βΎ ( Ο β { π } ) ) ) β ( 2nd β π’ ) } β ( π βm Ο ) |
82 |
33 81
|
elpwi2 |
β’ { π β ( π βm Ο ) β£ β π§ β π ( { β¨ π , π§ β© } βͺ ( π βΎ ( Ο β { π } ) ) ) β ( 2nd β π’ ) } β π« ( π βm Ο ) |
83 |
|
eleq1 |
β’ ( π = { π β ( π βm Ο ) β£ β π§ β π ( { β¨ π , π§ β© } βͺ ( π βΎ ( Ο β { π } ) ) ) β ( 2nd β π’ ) } β ( π β π« ( π βm Ο ) β { π β ( π βm Ο ) β£ β π§ β π ( { β¨ π , π§ β© } βͺ ( π βΎ ( Ο β { π } ) ) ) β ( 2nd β π’ ) } β π« ( π βm Ο ) ) ) |
84 |
82 83
|
mpbiri |
β’ ( π = { π β ( π βm Ο ) β£ β π§ β π ( { β¨ π , π§ β© } βͺ ( π βΎ ( Ο β { π } ) ) ) β ( 2nd β π’ ) } β π β π« ( π βm Ο ) ) |
85 |
84
|
adantl |
β’ ( ( π₯ = βπ π ( 1st β π’ ) β§ π = { π β ( π βm Ο ) β£ β π§ β π ( { β¨ π , π§ β© } βͺ ( π βΎ ( Ο β { π } ) ) ) β ( 2nd β π’ ) } ) β π β π« ( π βm Ο ) ) |
86 |
85
|
a1i |
β’ ( π β Ο β ( ( π₯ = βπ π ( 1st β π’ ) β§ π = { π β ( π βm Ο ) β£ β π§ β π ( { β¨ π , π§ β© } βͺ ( π βΎ ( Ο β { π } ) ) ) β ( 2nd β π’ ) } ) β π β π« ( π βm Ο ) ) ) |
87 |
86
|
rexlimiv |
β’ ( β π β Ο ( π₯ = βπ π ( 1st β π’ ) β§ π = { π β ( π βm Ο ) β£ β π§ β π ( { β¨ π , π§ β© } βͺ ( π βΎ ( Ο β { π } ) ) ) β ( 2nd β π’ ) } ) β π β π« ( π βm Ο ) ) |
88 |
80 87
|
jaoi |
β’ ( ( β π£ β ( ( π Sat πΈ ) β π ) ( π₯ = ( ( 1st β π’ ) βΌπ ( 1st β π£ ) ) β§ π = ( ( π βm Ο ) β ( ( 2nd β π’ ) β© ( 2nd β π£ ) ) ) ) β¨ β π β Ο ( π₯ = βπ π ( 1st β π’ ) β§ π = { π β ( π βm Ο ) β£ β π§ β π ( { β¨ π , π§ β© } βͺ ( π βΎ ( Ο β { π } ) ) ) β ( 2nd β π’ ) } ) ) β π β π« ( π βm Ο ) ) |
89 |
88
|
a1i |
β’ ( π’ β ( ( π Sat πΈ ) β π ) β ( ( β π£ β ( ( π Sat πΈ ) β π ) ( π₯ = ( ( 1st β π’ ) βΌπ ( 1st β π£ ) ) β§ π = ( ( π βm Ο ) β ( ( 2nd β π’ ) β© ( 2nd β π£ ) ) ) ) β¨ β π β Ο ( π₯ = βπ π ( 1st β π’ ) β§ π = { π β ( π βm Ο ) β£ β π§ β π ( { β¨ π , π§ β© } βͺ ( π βΎ ( Ο β { π } ) ) ) β ( 2nd β π’ ) } ) ) β π β π« ( π βm Ο ) ) ) |
90 |
89
|
rexlimiv |
β’ ( β π’ β ( ( π Sat πΈ ) β π ) ( β π£ β ( ( π Sat πΈ ) β π ) ( π₯ = ( ( 1st β π’ ) βΌπ ( 1st β π£ ) ) β§ π = ( ( π βm Ο ) β ( ( 2nd β π’ ) β© ( 2nd β π£ ) ) ) ) β¨ β π β Ο ( π₯ = βπ π ( 1st β π’ ) β§ π = { π β ( π βm Ο ) β£ β π§ β π ( { β¨ π , π§ β© } βͺ ( π βΎ ( Ο β { π } ) ) ) β ( 2nd β π’ ) } ) ) β π β π« ( π βm Ο ) ) |
91 |
90
|
exlimiv |
β’ ( β π₯ β π’ β ( ( π Sat πΈ ) β π ) ( β π£ β ( ( π Sat πΈ ) β π ) ( π₯ = ( ( 1st β π’ ) βΌπ ( 1st β π£ ) ) β§ π = ( ( π βm Ο ) β ( ( 2nd β π’ ) β© ( 2nd β π£ ) ) ) ) β¨ β π β Ο ( π₯ = βπ π ( 1st β π’ ) β§ π = { π β ( π βm Ο ) β£ β π§ β π ( { β¨ π , π§ β© } βͺ ( π βΎ ( Ο β { π } ) ) ) β ( 2nd β π’ ) } ) ) β π β π« ( π βm Ο ) ) |
92 |
91
|
a1i |
β’ ( ( ( π β Ο β§ ( ( π β π β§ πΈ β π ) β ( π β ran ( ( π Sat πΈ ) β π ) β π β π« ( π βm Ο ) ) ) ) β§ ( π β π β§ πΈ β π ) ) β ( β π₯ β π’ β ( ( π Sat πΈ ) β π ) ( β π£ β ( ( π Sat πΈ ) β π ) ( π₯ = ( ( 1st β π’ ) βΌπ ( 1st β π£ ) ) β§ π = ( ( π βm Ο ) β ( ( 2nd β π’ ) β© ( 2nd β π£ ) ) ) ) β¨ β π β Ο ( π₯ = βπ π ( 1st β π’ ) β§ π = { π β ( π βm Ο ) β£ β π§ β π ( { β¨ π , π§ β© } βͺ ( π βΎ ( Ο β { π } ) ) ) β ( 2nd β π’ ) } ) ) β π β π« ( π βm Ο ) ) ) |
93 |
73 92
|
jaod |
β’ ( ( ( π β Ο β§ ( ( π β π β§ πΈ β π ) β ( π β ran ( ( π Sat πΈ ) β π ) β π β π« ( π βm Ο ) ) ) ) β§ ( π β π β§ πΈ β π ) ) β ( ( π β ran ( ( π Sat πΈ ) β π ) β¨ β π₯ β π’ β ( ( π Sat πΈ ) β π ) ( β π£ β ( ( π Sat πΈ ) β π ) ( π₯ = ( ( 1st β π’ ) βΌπ ( 1st β π£ ) ) β§ π = ( ( π βm Ο ) β ( ( 2nd β π’ ) β© ( 2nd β π£ ) ) ) ) β¨ β π β Ο ( π₯ = βπ π ( 1st β π’ ) β§ π = { π β ( π βm Ο ) β£ β π§ β π ( { β¨ π , π§ β© } βͺ ( π βΎ ( Ο β { π } ) ) ) β ( 2nd β π’ ) } ) ) ) β π β π« ( π βm Ο ) ) ) |
94 |
71 93
|
sylbid |
β’ ( ( ( π β Ο β§ ( ( π β π β§ πΈ β π ) β ( π β ran ( ( π Sat πΈ ) β π ) β π β π« ( π βm Ο ) ) ) ) β§ ( π β π β§ πΈ β π ) ) β ( π β ran ( ( π Sat πΈ ) β suc π ) β π β π« ( π βm Ο ) ) ) |
95 |
94
|
exp31 |
β’ ( π β Ο β ( ( ( π β π β§ πΈ β π ) β ( π β ran ( ( π Sat πΈ ) β π ) β π β π« ( π βm Ο ) ) ) β ( ( π β π β§ πΈ β π ) β ( π β ran ( ( π Sat πΈ ) β suc π ) β π β π« ( π βm Ο ) ) ) ) ) |
96 |
5 10 15 20 45 95
|
finds |
β’ ( π β Ο β ( ( π β π β§ πΈ β π ) β ( π β ran ( ( π Sat πΈ ) β π ) β π β π« ( π βm Ο ) ) ) ) |
97 |
96
|
com12 |
β’ ( ( π β π β§ πΈ β π ) β ( π β Ο β ( π β ran ( ( π Sat πΈ ) β π ) β π β π« ( π βm Ο ) ) ) ) |
98 |
97
|
3impia |
β’ ( ( π β π β§ πΈ β π β§ π β Ο ) β ( π β ran ( ( π Sat πΈ ) β π ) β π β π« ( π βm Ο ) ) ) |
99 |
98
|
ssrdv |
β’ ( ( π β π β§ πΈ β π β§ π β Ο ) β ran ( ( π Sat πΈ ) β π ) β π« ( π βm Ο ) ) |