Metamath Proof Explorer


Theorem satfrnmapom

Description: The range of the satisfaction predicate as function over wff codes in any model M and any binary relation E on M for a natural number N is a subset of the power set of all mappings from the natural numbers into the model M . (Contributed by AV, 13-Oct-2023)

Ref Expression
Assertion satfrnmapom ( ( 𝑀𝑉𝐸𝑊𝑁 ∈ ω ) → ran ( ( 𝑀 Sat 𝐸 ) ‘ 𝑁 ) ⊆ 𝒫 ( 𝑀m ω ) )

Proof

Step Hyp Ref Expression
1 fveq2 ( 𝑎 = ∅ → ( ( 𝑀 Sat 𝐸 ) ‘ 𝑎 ) = ( ( 𝑀 Sat 𝐸 ) ‘ ∅ ) )
2 1 rneqd ( 𝑎 = ∅ → ran ( ( 𝑀 Sat 𝐸 ) ‘ 𝑎 ) = ran ( ( 𝑀 Sat 𝐸 ) ‘ ∅ ) )
3 2 eleq2d ( 𝑎 = ∅ → ( 𝑛 ∈ ran ( ( 𝑀 Sat 𝐸 ) ‘ 𝑎 ) ↔ 𝑛 ∈ ran ( ( 𝑀 Sat 𝐸 ) ‘ ∅ ) ) )
4 3 imbi1d ( 𝑎 = ∅ → ( ( 𝑛 ∈ ran ( ( 𝑀 Sat 𝐸 ) ‘ 𝑎 ) → 𝑛 ∈ 𝒫 ( 𝑀m ω ) ) ↔ ( 𝑛 ∈ ran ( ( 𝑀 Sat 𝐸 ) ‘ ∅ ) → 𝑛 ∈ 𝒫 ( 𝑀m ω ) ) ) )
5 4 imbi2d ( 𝑎 = ∅ → ( ( ( 𝑀𝑉𝐸𝑊 ) → ( 𝑛 ∈ ran ( ( 𝑀 Sat 𝐸 ) ‘ 𝑎 ) → 𝑛 ∈ 𝒫 ( 𝑀m ω ) ) ) ↔ ( ( 𝑀𝑉𝐸𝑊 ) → ( 𝑛 ∈ ran ( ( 𝑀 Sat 𝐸 ) ‘ ∅ ) → 𝑛 ∈ 𝒫 ( 𝑀m ω ) ) ) ) )
6 fveq2 ( 𝑎 = 𝑏 → ( ( 𝑀 Sat 𝐸 ) ‘ 𝑎 ) = ( ( 𝑀 Sat 𝐸 ) ‘ 𝑏 ) )
7 6 rneqd ( 𝑎 = 𝑏 → ran ( ( 𝑀 Sat 𝐸 ) ‘ 𝑎 ) = ran ( ( 𝑀 Sat 𝐸 ) ‘ 𝑏 ) )
8 7 eleq2d ( 𝑎 = 𝑏 → ( 𝑛 ∈ ran ( ( 𝑀 Sat 𝐸 ) ‘ 𝑎 ) ↔ 𝑛 ∈ ran ( ( 𝑀 Sat 𝐸 ) ‘ 𝑏 ) ) )
9 8 imbi1d ( 𝑎 = 𝑏 → ( ( 𝑛 ∈ ran ( ( 𝑀 Sat 𝐸 ) ‘ 𝑎 ) → 𝑛 ∈ 𝒫 ( 𝑀m ω ) ) ↔ ( 𝑛 ∈ ran ( ( 𝑀 Sat 𝐸 ) ‘ 𝑏 ) → 𝑛 ∈ 𝒫 ( 𝑀m ω ) ) ) )
10 9 imbi2d ( 𝑎 = 𝑏 → ( ( ( 𝑀𝑉𝐸𝑊 ) → ( 𝑛 ∈ ran ( ( 𝑀 Sat 𝐸 ) ‘ 𝑎 ) → 𝑛 ∈ 𝒫 ( 𝑀m ω ) ) ) ↔ ( ( 𝑀𝑉𝐸𝑊 ) → ( 𝑛 ∈ ran ( ( 𝑀 Sat 𝐸 ) ‘ 𝑏 ) → 𝑛 ∈ 𝒫 ( 𝑀m ω ) ) ) ) )
11 fveq2 ( 𝑎 = suc 𝑏 → ( ( 𝑀 Sat 𝐸 ) ‘ 𝑎 ) = ( ( 𝑀 Sat 𝐸 ) ‘ suc 𝑏 ) )
12 11 rneqd ( 𝑎 = suc 𝑏 → ran ( ( 𝑀 Sat 𝐸 ) ‘ 𝑎 ) = ran ( ( 𝑀 Sat 𝐸 ) ‘ suc 𝑏 ) )
13 12 eleq2d ( 𝑎 = suc 𝑏 → ( 𝑛 ∈ ran ( ( 𝑀 Sat 𝐸 ) ‘ 𝑎 ) ↔ 𝑛 ∈ ran ( ( 𝑀 Sat 𝐸 ) ‘ suc 𝑏 ) ) )
14 13 imbi1d ( 𝑎 = suc 𝑏 → ( ( 𝑛 ∈ ran ( ( 𝑀 Sat 𝐸 ) ‘ 𝑎 ) → 𝑛 ∈ 𝒫 ( 𝑀m ω ) ) ↔ ( 𝑛 ∈ ran ( ( 𝑀 Sat 𝐸 ) ‘ suc 𝑏 ) → 𝑛 ∈ 𝒫 ( 𝑀m ω ) ) ) )
15 14 imbi2d ( 𝑎 = suc 𝑏 → ( ( ( 𝑀𝑉𝐸𝑊 ) → ( 𝑛 ∈ ran ( ( 𝑀 Sat 𝐸 ) ‘ 𝑎 ) → 𝑛 ∈ 𝒫 ( 𝑀m ω ) ) ) ↔ ( ( 𝑀𝑉𝐸𝑊 ) → ( 𝑛 ∈ ran ( ( 𝑀 Sat 𝐸 ) ‘ suc 𝑏 ) → 𝑛 ∈ 𝒫 ( 𝑀m ω ) ) ) ) )
16 fveq2 ( 𝑎 = 𝑁 → ( ( 𝑀 Sat 𝐸 ) ‘ 𝑎 ) = ( ( 𝑀 Sat 𝐸 ) ‘ 𝑁 ) )
17 16 rneqd ( 𝑎 = 𝑁 → ran ( ( 𝑀 Sat 𝐸 ) ‘ 𝑎 ) = ran ( ( 𝑀 Sat 𝐸 ) ‘ 𝑁 ) )
18 17 eleq2d ( 𝑎 = 𝑁 → ( 𝑛 ∈ ran ( ( 𝑀 Sat 𝐸 ) ‘ 𝑎 ) ↔ 𝑛 ∈ ran ( ( 𝑀 Sat 𝐸 ) ‘ 𝑁 ) ) )
19 18 imbi1d ( 𝑎 = 𝑁 → ( ( 𝑛 ∈ ran ( ( 𝑀 Sat 𝐸 ) ‘ 𝑎 ) → 𝑛 ∈ 𝒫 ( 𝑀m ω ) ) ↔ ( 𝑛 ∈ ran ( ( 𝑀 Sat 𝐸 ) ‘ 𝑁 ) → 𝑛 ∈ 𝒫 ( 𝑀m ω ) ) ) )
20 19 imbi2d ( 𝑎 = 𝑁 → ( ( ( 𝑀𝑉𝐸𝑊 ) → ( 𝑛 ∈ ran ( ( 𝑀 Sat 𝐸 ) ‘ 𝑎 ) → 𝑛 ∈ 𝒫 ( 𝑀m ω ) ) ) ↔ ( ( 𝑀𝑉𝐸𝑊 ) → ( 𝑛 ∈ ran ( ( 𝑀 Sat 𝐸 ) ‘ 𝑁 ) → 𝑛 ∈ 𝒫 ( 𝑀m ω ) ) ) ) )
21 eqid ( 𝑀 Sat 𝐸 ) = ( 𝑀 Sat 𝐸 )
22 21 satfv0 ( ( 𝑀𝑉𝐸𝑊 ) → ( ( 𝑀 Sat 𝐸 ) ‘ ∅ ) = { ⟨ 𝑥 , 𝑦 ⟩ ∣ ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω ( 𝑥 = ( 𝑖𝑔 𝑗 ) ∧ 𝑦 = { 𝑓 ∈ ( 𝑀m ω ) ∣ ( 𝑓𝑖 ) 𝐸 ( 𝑓𝑗 ) } ) } )
23 22 rneqd ( ( 𝑀𝑉𝐸𝑊 ) → ran ( ( 𝑀 Sat 𝐸 ) ‘ ∅ ) = ran { ⟨ 𝑥 , 𝑦 ⟩ ∣ ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω ( 𝑥 = ( 𝑖𝑔 𝑗 ) ∧ 𝑦 = { 𝑓 ∈ ( 𝑀m ω ) ∣ ( 𝑓𝑖 ) 𝐸 ( 𝑓𝑗 ) } ) } )
24 23 eleq2d ( ( 𝑀𝑉𝐸𝑊 ) → ( 𝑛 ∈ ran ( ( 𝑀 Sat 𝐸 ) ‘ ∅ ) ↔ 𝑛 ∈ ran { ⟨ 𝑥 , 𝑦 ⟩ ∣ ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω ( 𝑥 = ( 𝑖𝑔 𝑗 ) ∧ 𝑦 = { 𝑓 ∈ ( 𝑀m ω ) ∣ ( 𝑓𝑖 ) 𝐸 ( 𝑓𝑗 ) } ) } ) )
25 rnopab ran { ⟨ 𝑥 , 𝑦 ⟩ ∣ ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω ( 𝑥 = ( 𝑖𝑔 𝑗 ) ∧ 𝑦 = { 𝑓 ∈ ( 𝑀m ω ) ∣ ( 𝑓𝑖 ) 𝐸 ( 𝑓𝑗 ) } ) } = { 𝑦 ∣ ∃ 𝑥𝑖 ∈ ω ∃ 𝑗 ∈ ω ( 𝑥 = ( 𝑖𝑔 𝑗 ) ∧ 𝑦 = { 𝑓 ∈ ( 𝑀m ω ) ∣ ( 𝑓𝑖 ) 𝐸 ( 𝑓𝑗 ) } ) }
26 25 eleq2i ( 𝑛 ∈ ran { ⟨ 𝑥 , 𝑦 ⟩ ∣ ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω ( 𝑥 = ( 𝑖𝑔 𝑗 ) ∧ 𝑦 = { 𝑓 ∈ ( 𝑀m ω ) ∣ ( 𝑓𝑖 ) 𝐸 ( 𝑓𝑗 ) } ) } ↔ 𝑛 ∈ { 𝑦 ∣ ∃ 𝑥𝑖 ∈ ω ∃ 𝑗 ∈ ω ( 𝑥 = ( 𝑖𝑔 𝑗 ) ∧ 𝑦 = { 𝑓 ∈ ( 𝑀m ω ) ∣ ( 𝑓𝑖 ) 𝐸 ( 𝑓𝑗 ) } ) } )
27 vex 𝑛 ∈ V
28 eqeq1 ( 𝑦 = 𝑛 → ( 𝑦 = { 𝑓 ∈ ( 𝑀m ω ) ∣ ( 𝑓𝑖 ) 𝐸 ( 𝑓𝑗 ) } ↔ 𝑛 = { 𝑓 ∈ ( 𝑀m ω ) ∣ ( 𝑓𝑖 ) 𝐸 ( 𝑓𝑗 ) } ) )
29 28 anbi2d ( 𝑦 = 𝑛 → ( ( 𝑥 = ( 𝑖𝑔 𝑗 ) ∧ 𝑦 = { 𝑓 ∈ ( 𝑀m ω ) ∣ ( 𝑓𝑖 ) 𝐸 ( 𝑓𝑗 ) } ) ↔ ( 𝑥 = ( 𝑖𝑔 𝑗 ) ∧ 𝑛 = { 𝑓 ∈ ( 𝑀m ω ) ∣ ( 𝑓𝑖 ) 𝐸 ( 𝑓𝑗 ) } ) ) )
30 29 2rexbidv ( 𝑦 = 𝑛 → ( ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω ( 𝑥 = ( 𝑖𝑔 𝑗 ) ∧ 𝑦 = { 𝑓 ∈ ( 𝑀m ω ) ∣ ( 𝑓𝑖 ) 𝐸 ( 𝑓𝑗 ) } ) ↔ ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω ( 𝑥 = ( 𝑖𝑔 𝑗 ) ∧ 𝑛 = { 𝑓 ∈ ( 𝑀m ω ) ∣ ( 𝑓𝑖 ) 𝐸 ( 𝑓𝑗 ) } ) ) )
31 30 exbidv ( 𝑦 = 𝑛 → ( ∃ 𝑥𝑖 ∈ ω ∃ 𝑗 ∈ ω ( 𝑥 = ( 𝑖𝑔 𝑗 ) ∧ 𝑦 = { 𝑓 ∈ ( 𝑀m ω ) ∣ ( 𝑓𝑖 ) 𝐸 ( 𝑓𝑗 ) } ) ↔ ∃ 𝑥𝑖 ∈ ω ∃ 𝑗 ∈ ω ( 𝑥 = ( 𝑖𝑔 𝑗 ) ∧ 𝑛 = { 𝑓 ∈ ( 𝑀m ω ) ∣ ( 𝑓𝑖 ) 𝐸 ( 𝑓𝑗 ) } ) ) )
32 27 31 elab ( 𝑛 ∈ { 𝑦 ∣ ∃ 𝑥𝑖 ∈ ω ∃ 𝑗 ∈ ω ( 𝑥 = ( 𝑖𝑔 𝑗 ) ∧ 𝑦 = { 𝑓 ∈ ( 𝑀m ω ) ∣ ( 𝑓𝑖 ) 𝐸 ( 𝑓𝑗 ) } ) } ↔ ∃ 𝑥𝑖 ∈ ω ∃ 𝑗 ∈ ω ( 𝑥 = ( 𝑖𝑔 𝑗 ) ∧ 𝑛 = { 𝑓 ∈ ( 𝑀m ω ) ∣ ( 𝑓𝑖 ) 𝐸 ( 𝑓𝑗 ) } ) )
33 ovex ( 𝑀m ω ) ∈ V
34 ssrab2 { 𝑓 ∈ ( 𝑀m ω ) ∣ ( 𝑓𝑖 ) 𝐸 ( 𝑓𝑗 ) } ⊆ ( 𝑀m ω )
35 33 34 elpwi2 { 𝑓 ∈ ( 𝑀m ω ) ∣ ( 𝑓𝑖 ) 𝐸 ( 𝑓𝑗 ) } ∈ 𝒫 ( 𝑀m ω )
36 eleq1 ( 𝑛 = { 𝑓 ∈ ( 𝑀m ω ) ∣ ( 𝑓𝑖 ) 𝐸 ( 𝑓𝑗 ) } → ( 𝑛 ∈ 𝒫 ( 𝑀m ω ) ↔ { 𝑓 ∈ ( 𝑀m ω ) ∣ ( 𝑓𝑖 ) 𝐸 ( 𝑓𝑗 ) } ∈ 𝒫 ( 𝑀m ω ) ) )
37 35 36 mpbiri ( 𝑛 = { 𝑓 ∈ ( 𝑀m ω ) ∣ ( 𝑓𝑖 ) 𝐸 ( 𝑓𝑗 ) } → 𝑛 ∈ 𝒫 ( 𝑀m ω ) )
38 37 adantl ( ( 𝑥 = ( 𝑖𝑔 𝑗 ) ∧ 𝑛 = { 𝑓 ∈ ( 𝑀m ω ) ∣ ( 𝑓𝑖 ) 𝐸 ( 𝑓𝑗 ) } ) → 𝑛 ∈ 𝒫 ( 𝑀m ω ) )
39 38 a1i ( ( 𝑖 ∈ ω ∧ 𝑗 ∈ ω ) → ( ( 𝑥 = ( 𝑖𝑔 𝑗 ) ∧ 𝑛 = { 𝑓 ∈ ( 𝑀m ω ) ∣ ( 𝑓𝑖 ) 𝐸 ( 𝑓𝑗 ) } ) → 𝑛 ∈ 𝒫 ( 𝑀m ω ) ) )
40 39 rexlimivv ( ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω ( 𝑥 = ( 𝑖𝑔 𝑗 ) ∧ 𝑛 = { 𝑓 ∈ ( 𝑀m ω ) ∣ ( 𝑓𝑖 ) 𝐸 ( 𝑓𝑗 ) } ) → 𝑛 ∈ 𝒫 ( 𝑀m ω ) )
41 40 exlimiv ( ∃ 𝑥𝑖 ∈ ω ∃ 𝑗 ∈ ω ( 𝑥 = ( 𝑖𝑔 𝑗 ) ∧ 𝑛 = { 𝑓 ∈ ( 𝑀m ω ) ∣ ( 𝑓𝑖 ) 𝐸 ( 𝑓𝑗 ) } ) → 𝑛 ∈ 𝒫 ( 𝑀m ω ) )
42 32 41 sylbi ( 𝑛 ∈ { 𝑦 ∣ ∃ 𝑥𝑖 ∈ ω ∃ 𝑗 ∈ ω ( 𝑥 = ( 𝑖𝑔 𝑗 ) ∧ 𝑦 = { 𝑓 ∈ ( 𝑀m ω ) ∣ ( 𝑓𝑖 ) 𝐸 ( 𝑓𝑗 ) } ) } → 𝑛 ∈ 𝒫 ( 𝑀m ω ) )
43 42 a1i ( ( 𝑀𝑉𝐸𝑊 ) → ( 𝑛 ∈ { 𝑦 ∣ ∃ 𝑥𝑖 ∈ ω ∃ 𝑗 ∈ ω ( 𝑥 = ( 𝑖𝑔 𝑗 ) ∧ 𝑦 = { 𝑓 ∈ ( 𝑀m ω ) ∣ ( 𝑓𝑖 ) 𝐸 ( 𝑓𝑗 ) } ) } → 𝑛 ∈ 𝒫 ( 𝑀m ω ) ) )
44 26 43 syl5bi ( ( 𝑀𝑉𝐸𝑊 ) → ( 𝑛 ∈ ran { ⟨ 𝑥 , 𝑦 ⟩ ∣ ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω ( 𝑥 = ( 𝑖𝑔 𝑗 ) ∧ 𝑦 = { 𝑓 ∈ ( 𝑀m ω ) ∣ ( 𝑓𝑖 ) 𝐸 ( 𝑓𝑗 ) } ) } → 𝑛 ∈ 𝒫 ( 𝑀m ω ) ) )
45 24 44 sylbid ( ( 𝑀𝑉𝐸𝑊 ) → ( 𝑛 ∈ ran ( ( 𝑀 Sat 𝐸 ) ‘ ∅ ) → 𝑛 ∈ 𝒫 ( 𝑀m ω ) ) )
46 21 satfvsuc ( ( 𝑀𝑉𝐸𝑊𝑏 ∈ ω ) → ( ( 𝑀 Sat 𝐸 ) ‘ suc 𝑏 ) = ( ( ( 𝑀 Sat 𝐸 ) ‘ 𝑏 ) ∪ { ⟨ 𝑥 , 𝑦 ⟩ ∣ ∃ 𝑢 ∈ ( ( 𝑀 Sat 𝐸 ) ‘ 𝑏 ) ( ∃ 𝑣 ∈ ( ( 𝑀 Sat 𝐸 ) ‘ 𝑏 ) ( 𝑥 = ( ( 1st𝑢 ) ⊼𝑔 ( 1st𝑣 ) ) ∧ 𝑦 = ( ( 𝑀m ω ) ∖ ( ( 2nd𝑢 ) ∩ ( 2nd𝑣 ) ) ) ) ∨ ∃ 𝑖 ∈ ω ( 𝑥 = ∀𝑔 𝑖 ( 1st𝑢 ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀m ω ) ∣ ∀ 𝑧𝑀 ( { ⟨ 𝑖 , 𝑧 ⟩ } ∪ ( 𝑎 ↾ ( ω ∖ { 𝑖 } ) ) ) ∈ ( 2nd𝑢 ) } ) ) } ) )
47 46 3expa ( ( ( 𝑀𝑉𝐸𝑊 ) ∧ 𝑏 ∈ ω ) → ( ( 𝑀 Sat 𝐸 ) ‘ suc 𝑏 ) = ( ( ( 𝑀 Sat 𝐸 ) ‘ 𝑏 ) ∪ { ⟨ 𝑥 , 𝑦 ⟩ ∣ ∃ 𝑢 ∈ ( ( 𝑀 Sat 𝐸 ) ‘ 𝑏 ) ( ∃ 𝑣 ∈ ( ( 𝑀 Sat 𝐸 ) ‘ 𝑏 ) ( 𝑥 = ( ( 1st𝑢 ) ⊼𝑔 ( 1st𝑣 ) ) ∧ 𝑦 = ( ( 𝑀m ω ) ∖ ( ( 2nd𝑢 ) ∩ ( 2nd𝑣 ) ) ) ) ∨ ∃ 𝑖 ∈ ω ( 𝑥 = ∀𝑔 𝑖 ( 1st𝑢 ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀m ω ) ∣ ∀ 𝑧𝑀 ( { ⟨ 𝑖 , 𝑧 ⟩ } ∪ ( 𝑎 ↾ ( ω ∖ { 𝑖 } ) ) ) ∈ ( 2nd𝑢 ) } ) ) } ) )
48 47 rneqd ( ( ( 𝑀𝑉𝐸𝑊 ) ∧ 𝑏 ∈ ω ) → ran ( ( 𝑀 Sat 𝐸 ) ‘ suc 𝑏 ) = ran ( ( ( 𝑀 Sat 𝐸 ) ‘ 𝑏 ) ∪ { ⟨ 𝑥 , 𝑦 ⟩ ∣ ∃ 𝑢 ∈ ( ( 𝑀 Sat 𝐸 ) ‘ 𝑏 ) ( ∃ 𝑣 ∈ ( ( 𝑀 Sat 𝐸 ) ‘ 𝑏 ) ( 𝑥 = ( ( 1st𝑢 ) ⊼𝑔 ( 1st𝑣 ) ) ∧ 𝑦 = ( ( 𝑀m ω ) ∖ ( ( 2nd𝑢 ) ∩ ( 2nd𝑣 ) ) ) ) ∨ ∃ 𝑖 ∈ ω ( 𝑥 = ∀𝑔 𝑖 ( 1st𝑢 ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀m ω ) ∣ ∀ 𝑧𝑀 ( { ⟨ 𝑖 , 𝑧 ⟩ } ∪ ( 𝑎 ↾ ( ω ∖ { 𝑖 } ) ) ) ∈ ( 2nd𝑢 ) } ) ) } ) )
49 rnun ran ( ( ( 𝑀 Sat 𝐸 ) ‘ 𝑏 ) ∪ { ⟨ 𝑥 , 𝑦 ⟩ ∣ ∃ 𝑢 ∈ ( ( 𝑀 Sat 𝐸 ) ‘ 𝑏 ) ( ∃ 𝑣 ∈ ( ( 𝑀 Sat 𝐸 ) ‘ 𝑏 ) ( 𝑥 = ( ( 1st𝑢 ) ⊼𝑔 ( 1st𝑣 ) ) ∧ 𝑦 = ( ( 𝑀m ω ) ∖ ( ( 2nd𝑢 ) ∩ ( 2nd𝑣 ) ) ) ) ∨ ∃ 𝑖 ∈ ω ( 𝑥 = ∀𝑔 𝑖 ( 1st𝑢 ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀m ω ) ∣ ∀ 𝑧𝑀 ( { ⟨ 𝑖 , 𝑧 ⟩ } ∪ ( 𝑎 ↾ ( ω ∖ { 𝑖 } ) ) ) ∈ ( 2nd𝑢 ) } ) ) } ) = ( ran ( ( 𝑀 Sat 𝐸 ) ‘ 𝑏 ) ∪ ran { ⟨ 𝑥 , 𝑦 ⟩ ∣ ∃ 𝑢 ∈ ( ( 𝑀 Sat 𝐸 ) ‘ 𝑏 ) ( ∃ 𝑣 ∈ ( ( 𝑀 Sat 𝐸 ) ‘ 𝑏 ) ( 𝑥 = ( ( 1st𝑢 ) ⊼𝑔 ( 1st𝑣 ) ) ∧ 𝑦 = ( ( 𝑀m ω ) ∖ ( ( 2nd𝑢 ) ∩ ( 2nd𝑣 ) ) ) ) ∨ ∃ 𝑖 ∈ ω ( 𝑥 = ∀𝑔 𝑖 ( 1st𝑢 ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀m ω ) ∣ ∀ 𝑧𝑀 ( { ⟨ 𝑖 , 𝑧 ⟩ } ∪ ( 𝑎 ↾ ( ω ∖ { 𝑖 } ) ) ) ∈ ( 2nd𝑢 ) } ) ) } )
50 48 49 eqtrdi ( ( ( 𝑀𝑉𝐸𝑊 ) ∧ 𝑏 ∈ ω ) → ran ( ( 𝑀 Sat 𝐸 ) ‘ suc 𝑏 ) = ( ran ( ( 𝑀 Sat 𝐸 ) ‘ 𝑏 ) ∪ ran { ⟨ 𝑥 , 𝑦 ⟩ ∣ ∃ 𝑢 ∈ ( ( 𝑀 Sat 𝐸 ) ‘ 𝑏 ) ( ∃ 𝑣 ∈ ( ( 𝑀 Sat 𝐸 ) ‘ 𝑏 ) ( 𝑥 = ( ( 1st𝑢 ) ⊼𝑔 ( 1st𝑣 ) ) ∧ 𝑦 = ( ( 𝑀m ω ) ∖ ( ( 2nd𝑢 ) ∩ ( 2nd𝑣 ) ) ) ) ∨ ∃ 𝑖 ∈ ω ( 𝑥 = ∀𝑔 𝑖 ( 1st𝑢 ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀m ω ) ∣ ∀ 𝑧𝑀 ( { ⟨ 𝑖 , 𝑧 ⟩ } ∪ ( 𝑎 ↾ ( ω ∖ { 𝑖 } ) ) ) ∈ ( 2nd𝑢 ) } ) ) } ) )
51 50 eleq2d ( ( ( 𝑀𝑉𝐸𝑊 ) ∧ 𝑏 ∈ ω ) → ( 𝑛 ∈ ran ( ( 𝑀 Sat 𝐸 ) ‘ suc 𝑏 ) ↔ 𝑛 ∈ ( ran ( ( 𝑀 Sat 𝐸 ) ‘ 𝑏 ) ∪ ran { ⟨ 𝑥 , 𝑦 ⟩ ∣ ∃ 𝑢 ∈ ( ( 𝑀 Sat 𝐸 ) ‘ 𝑏 ) ( ∃ 𝑣 ∈ ( ( 𝑀 Sat 𝐸 ) ‘ 𝑏 ) ( 𝑥 = ( ( 1st𝑢 ) ⊼𝑔 ( 1st𝑣 ) ) ∧ 𝑦 = ( ( 𝑀m ω ) ∖ ( ( 2nd𝑢 ) ∩ ( 2nd𝑣 ) ) ) ) ∨ ∃ 𝑖 ∈ ω ( 𝑥 = ∀𝑔 𝑖 ( 1st𝑢 ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀m ω ) ∣ ∀ 𝑧𝑀 ( { ⟨ 𝑖 , 𝑧 ⟩ } ∪ ( 𝑎 ↾ ( ω ∖ { 𝑖 } ) ) ) ∈ ( 2nd𝑢 ) } ) ) } ) ) )
52 elun ( 𝑛 ∈ ( ran ( ( 𝑀 Sat 𝐸 ) ‘ 𝑏 ) ∪ ran { ⟨ 𝑥 , 𝑦 ⟩ ∣ ∃ 𝑢 ∈ ( ( 𝑀 Sat 𝐸 ) ‘ 𝑏 ) ( ∃ 𝑣 ∈ ( ( 𝑀 Sat 𝐸 ) ‘ 𝑏 ) ( 𝑥 = ( ( 1st𝑢 ) ⊼𝑔 ( 1st𝑣 ) ) ∧ 𝑦 = ( ( 𝑀m ω ) ∖ ( ( 2nd𝑢 ) ∩ ( 2nd𝑣 ) ) ) ) ∨ ∃ 𝑖 ∈ ω ( 𝑥 = ∀𝑔 𝑖 ( 1st𝑢 ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀m ω ) ∣ ∀ 𝑧𝑀 ( { ⟨ 𝑖 , 𝑧 ⟩ } ∪ ( 𝑎 ↾ ( ω ∖ { 𝑖 } ) ) ) ∈ ( 2nd𝑢 ) } ) ) } ) ↔ ( 𝑛 ∈ ran ( ( 𝑀 Sat 𝐸 ) ‘ 𝑏 ) ∨ 𝑛 ∈ ran { ⟨ 𝑥 , 𝑦 ⟩ ∣ ∃ 𝑢 ∈ ( ( 𝑀 Sat 𝐸 ) ‘ 𝑏 ) ( ∃ 𝑣 ∈ ( ( 𝑀 Sat 𝐸 ) ‘ 𝑏 ) ( 𝑥 = ( ( 1st𝑢 ) ⊼𝑔 ( 1st𝑣 ) ) ∧ 𝑦 = ( ( 𝑀m ω ) ∖ ( ( 2nd𝑢 ) ∩ ( 2nd𝑣 ) ) ) ) ∨ ∃ 𝑖 ∈ ω ( 𝑥 = ∀𝑔 𝑖 ( 1st𝑢 ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀m ω ) ∣ ∀ 𝑧𝑀 ( { ⟨ 𝑖 , 𝑧 ⟩ } ∪ ( 𝑎 ↾ ( ω ∖ { 𝑖 } ) ) ) ∈ ( 2nd𝑢 ) } ) ) } ) )
53 rnopab ran { ⟨ 𝑥 , 𝑦 ⟩ ∣ ∃ 𝑢 ∈ ( ( 𝑀 Sat 𝐸 ) ‘ 𝑏 ) ( ∃ 𝑣 ∈ ( ( 𝑀 Sat 𝐸 ) ‘ 𝑏 ) ( 𝑥 = ( ( 1st𝑢 ) ⊼𝑔 ( 1st𝑣 ) ) ∧ 𝑦 = ( ( 𝑀m ω ) ∖ ( ( 2nd𝑢 ) ∩ ( 2nd𝑣 ) ) ) ) ∨ ∃ 𝑖 ∈ ω ( 𝑥 = ∀𝑔 𝑖 ( 1st𝑢 ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀m ω ) ∣ ∀ 𝑧𝑀 ( { ⟨ 𝑖 , 𝑧 ⟩ } ∪ ( 𝑎 ↾ ( ω ∖ { 𝑖 } ) ) ) ∈ ( 2nd𝑢 ) } ) ) } = { 𝑦 ∣ ∃ 𝑥𝑢 ∈ ( ( 𝑀 Sat 𝐸 ) ‘ 𝑏 ) ( ∃ 𝑣 ∈ ( ( 𝑀 Sat 𝐸 ) ‘ 𝑏 ) ( 𝑥 = ( ( 1st𝑢 ) ⊼𝑔 ( 1st𝑣 ) ) ∧ 𝑦 = ( ( 𝑀m ω ) ∖ ( ( 2nd𝑢 ) ∩ ( 2nd𝑣 ) ) ) ) ∨ ∃ 𝑖 ∈ ω ( 𝑥 = ∀𝑔 𝑖 ( 1st𝑢 ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀m ω ) ∣ ∀ 𝑧𝑀 ( { ⟨ 𝑖 , 𝑧 ⟩ } ∪ ( 𝑎 ↾ ( ω ∖ { 𝑖 } ) ) ) ∈ ( 2nd𝑢 ) } ) ) }
54 53 eleq2i ( 𝑛 ∈ ran { ⟨ 𝑥 , 𝑦 ⟩ ∣ ∃ 𝑢 ∈ ( ( 𝑀 Sat 𝐸 ) ‘ 𝑏 ) ( ∃ 𝑣 ∈ ( ( 𝑀 Sat 𝐸 ) ‘ 𝑏 ) ( 𝑥 = ( ( 1st𝑢 ) ⊼𝑔 ( 1st𝑣 ) ) ∧ 𝑦 = ( ( 𝑀m ω ) ∖ ( ( 2nd𝑢 ) ∩ ( 2nd𝑣 ) ) ) ) ∨ ∃ 𝑖 ∈ ω ( 𝑥 = ∀𝑔 𝑖 ( 1st𝑢 ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀m ω ) ∣ ∀ 𝑧𝑀 ( { ⟨ 𝑖 , 𝑧 ⟩ } ∪ ( 𝑎 ↾ ( ω ∖ { 𝑖 } ) ) ) ∈ ( 2nd𝑢 ) } ) ) } ↔ 𝑛 ∈ { 𝑦 ∣ ∃ 𝑥𝑢 ∈ ( ( 𝑀 Sat 𝐸 ) ‘ 𝑏 ) ( ∃ 𝑣 ∈ ( ( 𝑀 Sat 𝐸 ) ‘ 𝑏 ) ( 𝑥 = ( ( 1st𝑢 ) ⊼𝑔 ( 1st𝑣 ) ) ∧ 𝑦 = ( ( 𝑀m ω ) ∖ ( ( 2nd𝑢 ) ∩ ( 2nd𝑣 ) ) ) ) ∨ ∃ 𝑖 ∈ ω ( 𝑥 = ∀𝑔 𝑖 ( 1st𝑢 ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀m ω ) ∣ ∀ 𝑧𝑀 ( { ⟨ 𝑖 , 𝑧 ⟩ } ∪ ( 𝑎 ↾ ( ω ∖ { 𝑖 } ) ) ) ∈ ( 2nd𝑢 ) } ) ) } )
55 eqeq1 ( 𝑦 = 𝑛 → ( 𝑦 = ( ( 𝑀m ω ) ∖ ( ( 2nd𝑢 ) ∩ ( 2nd𝑣 ) ) ) ↔ 𝑛 = ( ( 𝑀m ω ) ∖ ( ( 2nd𝑢 ) ∩ ( 2nd𝑣 ) ) ) ) )
56 55 anbi2d ( 𝑦 = 𝑛 → ( ( 𝑥 = ( ( 1st𝑢 ) ⊼𝑔 ( 1st𝑣 ) ) ∧ 𝑦 = ( ( 𝑀m ω ) ∖ ( ( 2nd𝑢 ) ∩ ( 2nd𝑣 ) ) ) ) ↔ ( 𝑥 = ( ( 1st𝑢 ) ⊼𝑔 ( 1st𝑣 ) ) ∧ 𝑛 = ( ( 𝑀m ω ) ∖ ( ( 2nd𝑢 ) ∩ ( 2nd𝑣 ) ) ) ) ) )
57 56 rexbidv ( 𝑦 = 𝑛 → ( ∃ 𝑣 ∈ ( ( 𝑀 Sat 𝐸 ) ‘ 𝑏 ) ( 𝑥 = ( ( 1st𝑢 ) ⊼𝑔 ( 1st𝑣 ) ) ∧ 𝑦 = ( ( 𝑀m ω ) ∖ ( ( 2nd𝑢 ) ∩ ( 2nd𝑣 ) ) ) ) ↔ ∃ 𝑣 ∈ ( ( 𝑀 Sat 𝐸 ) ‘ 𝑏 ) ( 𝑥 = ( ( 1st𝑢 ) ⊼𝑔 ( 1st𝑣 ) ) ∧ 𝑛 = ( ( 𝑀m ω ) ∖ ( ( 2nd𝑢 ) ∩ ( 2nd𝑣 ) ) ) ) ) )
58 eqeq1 ( 𝑦 = 𝑛 → ( 𝑦 = { 𝑎 ∈ ( 𝑀m ω ) ∣ ∀ 𝑧𝑀 ( { ⟨ 𝑖 , 𝑧 ⟩ } ∪ ( 𝑎 ↾ ( ω ∖ { 𝑖 } ) ) ) ∈ ( 2nd𝑢 ) } ↔ 𝑛 = { 𝑎 ∈ ( 𝑀m ω ) ∣ ∀ 𝑧𝑀 ( { ⟨ 𝑖 , 𝑧 ⟩ } ∪ ( 𝑎 ↾ ( ω ∖ { 𝑖 } ) ) ) ∈ ( 2nd𝑢 ) } ) )
59 58 anbi2d ( 𝑦 = 𝑛 → ( ( 𝑥 = ∀𝑔 𝑖 ( 1st𝑢 ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀m ω ) ∣ ∀ 𝑧𝑀 ( { ⟨ 𝑖 , 𝑧 ⟩ } ∪ ( 𝑎 ↾ ( ω ∖ { 𝑖 } ) ) ) ∈ ( 2nd𝑢 ) } ) ↔ ( 𝑥 = ∀𝑔 𝑖 ( 1st𝑢 ) ∧ 𝑛 = { 𝑎 ∈ ( 𝑀m ω ) ∣ ∀ 𝑧𝑀 ( { ⟨ 𝑖 , 𝑧 ⟩ } ∪ ( 𝑎 ↾ ( ω ∖ { 𝑖 } ) ) ) ∈ ( 2nd𝑢 ) } ) ) )
60 59 rexbidv ( 𝑦 = 𝑛 → ( ∃ 𝑖 ∈ ω ( 𝑥 = ∀𝑔 𝑖 ( 1st𝑢 ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀m ω ) ∣ ∀ 𝑧𝑀 ( { ⟨ 𝑖 , 𝑧 ⟩ } ∪ ( 𝑎 ↾ ( ω ∖ { 𝑖 } ) ) ) ∈ ( 2nd𝑢 ) } ) ↔ ∃ 𝑖 ∈ ω ( 𝑥 = ∀𝑔 𝑖 ( 1st𝑢 ) ∧ 𝑛 = { 𝑎 ∈ ( 𝑀m ω ) ∣ ∀ 𝑧𝑀 ( { ⟨ 𝑖 , 𝑧 ⟩ } ∪ ( 𝑎 ↾ ( ω ∖ { 𝑖 } ) ) ) ∈ ( 2nd𝑢 ) } ) ) )
61 57 60 orbi12d ( 𝑦 = 𝑛 → ( ( ∃ 𝑣 ∈ ( ( 𝑀 Sat 𝐸 ) ‘ 𝑏 ) ( 𝑥 = ( ( 1st𝑢 ) ⊼𝑔 ( 1st𝑣 ) ) ∧ 𝑦 = ( ( 𝑀m ω ) ∖ ( ( 2nd𝑢 ) ∩ ( 2nd𝑣 ) ) ) ) ∨ ∃ 𝑖 ∈ ω ( 𝑥 = ∀𝑔 𝑖 ( 1st𝑢 ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀m ω ) ∣ ∀ 𝑧𝑀 ( { ⟨ 𝑖 , 𝑧 ⟩ } ∪ ( 𝑎 ↾ ( ω ∖ { 𝑖 } ) ) ) ∈ ( 2nd𝑢 ) } ) ) ↔ ( ∃ 𝑣 ∈ ( ( 𝑀 Sat 𝐸 ) ‘ 𝑏 ) ( 𝑥 = ( ( 1st𝑢 ) ⊼𝑔 ( 1st𝑣 ) ) ∧ 𝑛 = ( ( 𝑀m ω ) ∖ ( ( 2nd𝑢 ) ∩ ( 2nd𝑣 ) ) ) ) ∨ ∃ 𝑖 ∈ ω ( 𝑥 = ∀𝑔 𝑖 ( 1st𝑢 ) ∧ 𝑛 = { 𝑎 ∈ ( 𝑀m ω ) ∣ ∀ 𝑧𝑀 ( { ⟨ 𝑖 , 𝑧 ⟩ } ∪ ( 𝑎 ↾ ( ω ∖ { 𝑖 } ) ) ) ∈ ( 2nd𝑢 ) } ) ) ) )
62 61 rexbidv ( 𝑦 = 𝑛 → ( ∃ 𝑢 ∈ ( ( 𝑀 Sat 𝐸 ) ‘ 𝑏 ) ( ∃ 𝑣 ∈ ( ( 𝑀 Sat 𝐸 ) ‘ 𝑏 ) ( 𝑥 = ( ( 1st𝑢 ) ⊼𝑔 ( 1st𝑣 ) ) ∧ 𝑦 = ( ( 𝑀m ω ) ∖ ( ( 2nd𝑢 ) ∩ ( 2nd𝑣 ) ) ) ) ∨ ∃ 𝑖 ∈ ω ( 𝑥 = ∀𝑔 𝑖 ( 1st𝑢 ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀m ω ) ∣ ∀ 𝑧𝑀 ( { ⟨ 𝑖 , 𝑧 ⟩ } ∪ ( 𝑎 ↾ ( ω ∖ { 𝑖 } ) ) ) ∈ ( 2nd𝑢 ) } ) ) ↔ ∃ 𝑢 ∈ ( ( 𝑀 Sat 𝐸 ) ‘ 𝑏 ) ( ∃ 𝑣 ∈ ( ( 𝑀 Sat 𝐸 ) ‘ 𝑏 ) ( 𝑥 = ( ( 1st𝑢 ) ⊼𝑔 ( 1st𝑣 ) ) ∧ 𝑛 = ( ( 𝑀m ω ) ∖ ( ( 2nd𝑢 ) ∩ ( 2nd𝑣 ) ) ) ) ∨ ∃ 𝑖 ∈ ω ( 𝑥 = ∀𝑔 𝑖 ( 1st𝑢 ) ∧ 𝑛 = { 𝑎 ∈ ( 𝑀m ω ) ∣ ∀ 𝑧𝑀 ( { ⟨ 𝑖 , 𝑧 ⟩ } ∪ ( 𝑎 ↾ ( ω ∖ { 𝑖 } ) ) ) ∈ ( 2nd𝑢 ) } ) ) ) )
63 62 exbidv ( 𝑦 = 𝑛 → ( ∃ 𝑥𝑢 ∈ ( ( 𝑀 Sat 𝐸 ) ‘ 𝑏 ) ( ∃ 𝑣 ∈ ( ( 𝑀 Sat 𝐸 ) ‘ 𝑏 ) ( 𝑥 = ( ( 1st𝑢 ) ⊼𝑔 ( 1st𝑣 ) ) ∧ 𝑦 = ( ( 𝑀m ω ) ∖ ( ( 2nd𝑢 ) ∩ ( 2nd𝑣 ) ) ) ) ∨ ∃ 𝑖 ∈ ω ( 𝑥 = ∀𝑔 𝑖 ( 1st𝑢 ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀m ω ) ∣ ∀ 𝑧𝑀 ( { ⟨ 𝑖 , 𝑧 ⟩ } ∪ ( 𝑎 ↾ ( ω ∖ { 𝑖 } ) ) ) ∈ ( 2nd𝑢 ) } ) ) ↔ ∃ 𝑥𝑢 ∈ ( ( 𝑀 Sat 𝐸 ) ‘ 𝑏 ) ( ∃ 𝑣 ∈ ( ( 𝑀 Sat 𝐸 ) ‘ 𝑏 ) ( 𝑥 = ( ( 1st𝑢 ) ⊼𝑔 ( 1st𝑣 ) ) ∧ 𝑛 = ( ( 𝑀m ω ) ∖ ( ( 2nd𝑢 ) ∩ ( 2nd𝑣 ) ) ) ) ∨ ∃ 𝑖 ∈ ω ( 𝑥 = ∀𝑔 𝑖 ( 1st𝑢 ) ∧ 𝑛 = { 𝑎 ∈ ( 𝑀m ω ) ∣ ∀ 𝑧𝑀 ( { ⟨ 𝑖 , 𝑧 ⟩ } ∪ ( 𝑎 ↾ ( ω ∖ { 𝑖 } ) ) ) ∈ ( 2nd𝑢 ) } ) ) ) )
64 27 63 elab ( 𝑛 ∈ { 𝑦 ∣ ∃ 𝑥𝑢 ∈ ( ( 𝑀 Sat 𝐸 ) ‘ 𝑏 ) ( ∃ 𝑣 ∈ ( ( 𝑀 Sat 𝐸 ) ‘ 𝑏 ) ( 𝑥 = ( ( 1st𝑢 ) ⊼𝑔 ( 1st𝑣 ) ) ∧ 𝑦 = ( ( 𝑀m ω ) ∖ ( ( 2nd𝑢 ) ∩ ( 2nd𝑣 ) ) ) ) ∨ ∃ 𝑖 ∈ ω ( 𝑥 = ∀𝑔 𝑖 ( 1st𝑢 ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀m ω ) ∣ ∀ 𝑧𝑀 ( { ⟨ 𝑖 , 𝑧 ⟩ } ∪ ( 𝑎 ↾ ( ω ∖ { 𝑖 } ) ) ) ∈ ( 2nd𝑢 ) } ) ) } ↔ ∃ 𝑥𝑢 ∈ ( ( 𝑀 Sat 𝐸 ) ‘ 𝑏 ) ( ∃ 𝑣 ∈ ( ( 𝑀 Sat 𝐸 ) ‘ 𝑏 ) ( 𝑥 = ( ( 1st𝑢 ) ⊼𝑔 ( 1st𝑣 ) ) ∧ 𝑛 = ( ( 𝑀m ω ) ∖ ( ( 2nd𝑢 ) ∩ ( 2nd𝑣 ) ) ) ) ∨ ∃ 𝑖 ∈ ω ( 𝑥 = ∀𝑔 𝑖 ( 1st𝑢 ) ∧ 𝑛 = { 𝑎 ∈ ( 𝑀m ω ) ∣ ∀ 𝑧𝑀 ( { ⟨ 𝑖 , 𝑧 ⟩ } ∪ ( 𝑎 ↾ ( ω ∖ { 𝑖 } ) ) ) ∈ ( 2nd𝑢 ) } ) ) )
65 54 64 bitri ( 𝑛 ∈ ran { ⟨ 𝑥 , 𝑦 ⟩ ∣ ∃ 𝑢 ∈ ( ( 𝑀 Sat 𝐸 ) ‘ 𝑏 ) ( ∃ 𝑣 ∈ ( ( 𝑀 Sat 𝐸 ) ‘ 𝑏 ) ( 𝑥 = ( ( 1st𝑢 ) ⊼𝑔 ( 1st𝑣 ) ) ∧ 𝑦 = ( ( 𝑀m ω ) ∖ ( ( 2nd𝑢 ) ∩ ( 2nd𝑣 ) ) ) ) ∨ ∃ 𝑖 ∈ ω ( 𝑥 = ∀𝑔 𝑖 ( 1st𝑢 ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀m ω ) ∣ ∀ 𝑧𝑀 ( { ⟨ 𝑖 , 𝑧 ⟩ } ∪ ( 𝑎 ↾ ( ω ∖ { 𝑖 } ) ) ) ∈ ( 2nd𝑢 ) } ) ) } ↔ ∃ 𝑥𝑢 ∈ ( ( 𝑀 Sat 𝐸 ) ‘ 𝑏 ) ( ∃ 𝑣 ∈ ( ( 𝑀 Sat 𝐸 ) ‘ 𝑏 ) ( 𝑥 = ( ( 1st𝑢 ) ⊼𝑔 ( 1st𝑣 ) ) ∧ 𝑛 = ( ( 𝑀m ω ) ∖ ( ( 2nd𝑢 ) ∩ ( 2nd𝑣 ) ) ) ) ∨ ∃ 𝑖 ∈ ω ( 𝑥 = ∀𝑔 𝑖 ( 1st𝑢 ) ∧ 𝑛 = { 𝑎 ∈ ( 𝑀m ω ) ∣ ∀ 𝑧𝑀 ( { ⟨ 𝑖 , 𝑧 ⟩ } ∪ ( 𝑎 ↾ ( ω ∖ { 𝑖 } ) ) ) ∈ ( 2nd𝑢 ) } ) ) )
66 65 orbi2i ( ( 𝑛 ∈ ran ( ( 𝑀 Sat 𝐸 ) ‘ 𝑏 ) ∨ 𝑛 ∈ ran { ⟨ 𝑥 , 𝑦 ⟩ ∣ ∃ 𝑢 ∈ ( ( 𝑀 Sat 𝐸 ) ‘ 𝑏 ) ( ∃ 𝑣 ∈ ( ( 𝑀 Sat 𝐸 ) ‘ 𝑏 ) ( 𝑥 = ( ( 1st𝑢 ) ⊼𝑔 ( 1st𝑣 ) ) ∧ 𝑦 = ( ( 𝑀m ω ) ∖ ( ( 2nd𝑢 ) ∩ ( 2nd𝑣 ) ) ) ) ∨ ∃ 𝑖 ∈ ω ( 𝑥 = ∀𝑔 𝑖 ( 1st𝑢 ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀m ω ) ∣ ∀ 𝑧𝑀 ( { ⟨ 𝑖 , 𝑧 ⟩ } ∪ ( 𝑎 ↾ ( ω ∖ { 𝑖 } ) ) ) ∈ ( 2nd𝑢 ) } ) ) } ) ↔ ( 𝑛 ∈ ran ( ( 𝑀 Sat 𝐸 ) ‘ 𝑏 ) ∨ ∃ 𝑥𝑢 ∈ ( ( 𝑀 Sat 𝐸 ) ‘ 𝑏 ) ( ∃ 𝑣 ∈ ( ( 𝑀 Sat 𝐸 ) ‘ 𝑏 ) ( 𝑥 = ( ( 1st𝑢 ) ⊼𝑔 ( 1st𝑣 ) ) ∧ 𝑛 = ( ( 𝑀m ω ) ∖ ( ( 2nd𝑢 ) ∩ ( 2nd𝑣 ) ) ) ) ∨ ∃ 𝑖 ∈ ω ( 𝑥 = ∀𝑔 𝑖 ( 1st𝑢 ) ∧ 𝑛 = { 𝑎 ∈ ( 𝑀m ω ) ∣ ∀ 𝑧𝑀 ( { ⟨ 𝑖 , 𝑧 ⟩ } ∪ ( 𝑎 ↾ ( ω ∖ { 𝑖 } ) ) ) ∈ ( 2nd𝑢 ) } ) ) ) )
67 52 66 bitri ( 𝑛 ∈ ( ran ( ( 𝑀 Sat 𝐸 ) ‘ 𝑏 ) ∪ ran { ⟨ 𝑥 , 𝑦 ⟩ ∣ ∃ 𝑢 ∈ ( ( 𝑀 Sat 𝐸 ) ‘ 𝑏 ) ( ∃ 𝑣 ∈ ( ( 𝑀 Sat 𝐸 ) ‘ 𝑏 ) ( 𝑥 = ( ( 1st𝑢 ) ⊼𝑔 ( 1st𝑣 ) ) ∧ 𝑦 = ( ( 𝑀m ω ) ∖ ( ( 2nd𝑢 ) ∩ ( 2nd𝑣 ) ) ) ) ∨ ∃ 𝑖 ∈ ω ( 𝑥 = ∀𝑔 𝑖 ( 1st𝑢 ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀m ω ) ∣ ∀ 𝑧𝑀 ( { ⟨ 𝑖 , 𝑧 ⟩ } ∪ ( 𝑎 ↾ ( ω ∖ { 𝑖 } ) ) ) ∈ ( 2nd𝑢 ) } ) ) } ) ↔ ( 𝑛 ∈ ran ( ( 𝑀 Sat 𝐸 ) ‘ 𝑏 ) ∨ ∃ 𝑥𝑢 ∈ ( ( 𝑀 Sat 𝐸 ) ‘ 𝑏 ) ( ∃ 𝑣 ∈ ( ( 𝑀 Sat 𝐸 ) ‘ 𝑏 ) ( 𝑥 = ( ( 1st𝑢 ) ⊼𝑔 ( 1st𝑣 ) ) ∧ 𝑛 = ( ( 𝑀m ω ) ∖ ( ( 2nd𝑢 ) ∩ ( 2nd𝑣 ) ) ) ) ∨ ∃ 𝑖 ∈ ω ( 𝑥 = ∀𝑔 𝑖 ( 1st𝑢 ) ∧ 𝑛 = { 𝑎 ∈ ( 𝑀m ω ) ∣ ∀ 𝑧𝑀 ( { ⟨ 𝑖 , 𝑧 ⟩ } ∪ ( 𝑎 ↾ ( ω ∖ { 𝑖 } ) ) ) ∈ ( 2nd𝑢 ) } ) ) ) )
68 51 67 bitrdi ( ( ( 𝑀𝑉𝐸𝑊 ) ∧ 𝑏 ∈ ω ) → ( 𝑛 ∈ ran ( ( 𝑀 Sat 𝐸 ) ‘ suc 𝑏 ) ↔ ( 𝑛 ∈ ran ( ( 𝑀 Sat 𝐸 ) ‘ 𝑏 ) ∨ ∃ 𝑥𝑢 ∈ ( ( 𝑀 Sat 𝐸 ) ‘ 𝑏 ) ( ∃ 𝑣 ∈ ( ( 𝑀 Sat 𝐸 ) ‘ 𝑏 ) ( 𝑥 = ( ( 1st𝑢 ) ⊼𝑔 ( 1st𝑣 ) ) ∧ 𝑛 = ( ( 𝑀m ω ) ∖ ( ( 2nd𝑢 ) ∩ ( 2nd𝑣 ) ) ) ) ∨ ∃ 𝑖 ∈ ω ( 𝑥 = ∀𝑔 𝑖 ( 1st𝑢 ) ∧ 𝑛 = { 𝑎 ∈ ( 𝑀m ω ) ∣ ∀ 𝑧𝑀 ( { ⟨ 𝑖 , 𝑧 ⟩ } ∪ ( 𝑎 ↾ ( ω ∖ { 𝑖 } ) ) ) ∈ ( 2nd𝑢 ) } ) ) ) ) )
69 68 expcom ( 𝑏 ∈ ω → ( ( 𝑀𝑉𝐸𝑊 ) → ( 𝑛 ∈ ran ( ( 𝑀 Sat 𝐸 ) ‘ suc 𝑏 ) ↔ ( 𝑛 ∈ ran ( ( 𝑀 Sat 𝐸 ) ‘ 𝑏 ) ∨ ∃ 𝑥𝑢 ∈ ( ( 𝑀 Sat 𝐸 ) ‘ 𝑏 ) ( ∃ 𝑣 ∈ ( ( 𝑀 Sat 𝐸 ) ‘ 𝑏 ) ( 𝑥 = ( ( 1st𝑢 ) ⊼𝑔 ( 1st𝑣 ) ) ∧ 𝑛 = ( ( 𝑀m ω ) ∖ ( ( 2nd𝑢 ) ∩ ( 2nd𝑣 ) ) ) ) ∨ ∃ 𝑖 ∈ ω ( 𝑥 = ∀𝑔 𝑖 ( 1st𝑢 ) ∧ 𝑛 = { 𝑎 ∈ ( 𝑀m ω ) ∣ ∀ 𝑧𝑀 ( { ⟨ 𝑖 , 𝑧 ⟩ } ∪ ( 𝑎 ↾ ( ω ∖ { 𝑖 } ) ) ) ∈ ( 2nd𝑢 ) } ) ) ) ) ) )
70 69 adantr ( ( 𝑏 ∈ ω ∧ ( ( 𝑀𝑉𝐸𝑊 ) → ( 𝑛 ∈ ran ( ( 𝑀 Sat 𝐸 ) ‘ 𝑏 ) → 𝑛 ∈ 𝒫 ( 𝑀m ω ) ) ) ) → ( ( 𝑀𝑉𝐸𝑊 ) → ( 𝑛 ∈ ran ( ( 𝑀 Sat 𝐸 ) ‘ suc 𝑏 ) ↔ ( 𝑛 ∈ ran ( ( 𝑀 Sat 𝐸 ) ‘ 𝑏 ) ∨ ∃ 𝑥𝑢 ∈ ( ( 𝑀 Sat 𝐸 ) ‘ 𝑏 ) ( ∃ 𝑣 ∈ ( ( 𝑀 Sat 𝐸 ) ‘ 𝑏 ) ( 𝑥 = ( ( 1st𝑢 ) ⊼𝑔 ( 1st𝑣 ) ) ∧ 𝑛 = ( ( 𝑀m ω ) ∖ ( ( 2nd𝑢 ) ∩ ( 2nd𝑣 ) ) ) ) ∨ ∃ 𝑖 ∈ ω ( 𝑥 = ∀𝑔 𝑖 ( 1st𝑢 ) ∧ 𝑛 = { 𝑎 ∈ ( 𝑀m ω ) ∣ ∀ 𝑧𝑀 ( { ⟨ 𝑖 , 𝑧 ⟩ } ∪ ( 𝑎 ↾ ( ω ∖ { 𝑖 } ) ) ) ∈ ( 2nd𝑢 ) } ) ) ) ) ) )
71 70 imp ( ( ( 𝑏 ∈ ω ∧ ( ( 𝑀𝑉𝐸𝑊 ) → ( 𝑛 ∈ ran ( ( 𝑀 Sat 𝐸 ) ‘ 𝑏 ) → 𝑛 ∈ 𝒫 ( 𝑀m ω ) ) ) ) ∧ ( 𝑀𝑉𝐸𝑊 ) ) → ( 𝑛 ∈ ran ( ( 𝑀 Sat 𝐸 ) ‘ suc 𝑏 ) ↔ ( 𝑛 ∈ ran ( ( 𝑀 Sat 𝐸 ) ‘ 𝑏 ) ∨ ∃ 𝑥𝑢 ∈ ( ( 𝑀 Sat 𝐸 ) ‘ 𝑏 ) ( ∃ 𝑣 ∈ ( ( 𝑀 Sat 𝐸 ) ‘ 𝑏 ) ( 𝑥 = ( ( 1st𝑢 ) ⊼𝑔 ( 1st𝑣 ) ) ∧ 𝑛 = ( ( 𝑀m ω ) ∖ ( ( 2nd𝑢 ) ∩ ( 2nd𝑣 ) ) ) ) ∨ ∃ 𝑖 ∈ ω ( 𝑥 = ∀𝑔 𝑖 ( 1st𝑢 ) ∧ 𝑛 = { 𝑎 ∈ ( 𝑀m ω ) ∣ ∀ 𝑧𝑀 ( { ⟨ 𝑖 , 𝑧 ⟩ } ∪ ( 𝑎 ↾ ( ω ∖ { 𝑖 } ) ) ) ∈ ( 2nd𝑢 ) } ) ) ) ) )
72 simpr ( ( 𝑏 ∈ ω ∧ ( ( 𝑀𝑉𝐸𝑊 ) → ( 𝑛 ∈ ran ( ( 𝑀 Sat 𝐸 ) ‘ 𝑏 ) → 𝑛 ∈ 𝒫 ( 𝑀m ω ) ) ) ) → ( ( 𝑀𝑉𝐸𝑊 ) → ( 𝑛 ∈ ran ( ( 𝑀 Sat 𝐸 ) ‘ 𝑏 ) → 𝑛 ∈ 𝒫 ( 𝑀m ω ) ) ) )
73 72 imp ( ( ( 𝑏 ∈ ω ∧ ( ( 𝑀𝑉𝐸𝑊 ) → ( 𝑛 ∈ ran ( ( 𝑀 Sat 𝐸 ) ‘ 𝑏 ) → 𝑛 ∈ 𝒫 ( 𝑀m ω ) ) ) ) ∧ ( 𝑀𝑉𝐸𝑊 ) ) → ( 𝑛 ∈ ran ( ( 𝑀 Sat 𝐸 ) ‘ 𝑏 ) → 𝑛 ∈ 𝒫 ( 𝑀m ω ) ) )
74 difss ( ( 𝑀m ω ) ∖ ( ( 2nd𝑢 ) ∩ ( 2nd𝑣 ) ) ) ⊆ ( 𝑀m ω )
75 33 74 elpwi2 ( ( 𝑀m ω ) ∖ ( ( 2nd𝑢 ) ∩ ( 2nd𝑣 ) ) ) ∈ 𝒫 ( 𝑀m ω )
76 eleq1 ( 𝑛 = ( ( 𝑀m ω ) ∖ ( ( 2nd𝑢 ) ∩ ( 2nd𝑣 ) ) ) → ( 𝑛 ∈ 𝒫 ( 𝑀m ω ) ↔ ( ( 𝑀m ω ) ∖ ( ( 2nd𝑢 ) ∩ ( 2nd𝑣 ) ) ) ∈ 𝒫 ( 𝑀m ω ) ) )
77 75 76 mpbiri ( 𝑛 = ( ( 𝑀m ω ) ∖ ( ( 2nd𝑢 ) ∩ ( 2nd𝑣 ) ) ) → 𝑛 ∈ 𝒫 ( 𝑀m ω ) )
78 77 adantl ( ( 𝑥 = ( ( 1st𝑢 ) ⊼𝑔 ( 1st𝑣 ) ) ∧ 𝑛 = ( ( 𝑀m ω ) ∖ ( ( 2nd𝑢 ) ∩ ( 2nd𝑣 ) ) ) ) → 𝑛 ∈ 𝒫 ( 𝑀m ω ) )
79 78 adantl ( ( 𝑣 ∈ ( ( 𝑀 Sat 𝐸 ) ‘ 𝑏 ) ∧ ( 𝑥 = ( ( 1st𝑢 ) ⊼𝑔 ( 1st𝑣 ) ) ∧ 𝑛 = ( ( 𝑀m ω ) ∖ ( ( 2nd𝑢 ) ∩ ( 2nd𝑣 ) ) ) ) ) → 𝑛 ∈ 𝒫 ( 𝑀m ω ) )
80 79 rexlimiva ( ∃ 𝑣 ∈ ( ( 𝑀 Sat 𝐸 ) ‘ 𝑏 ) ( 𝑥 = ( ( 1st𝑢 ) ⊼𝑔 ( 1st𝑣 ) ) ∧ 𝑛 = ( ( 𝑀m ω ) ∖ ( ( 2nd𝑢 ) ∩ ( 2nd𝑣 ) ) ) ) → 𝑛 ∈ 𝒫 ( 𝑀m ω ) )
81 ssrab2 { 𝑎 ∈ ( 𝑀m ω ) ∣ ∀ 𝑧𝑀 ( { ⟨ 𝑖 , 𝑧 ⟩ } ∪ ( 𝑎 ↾ ( ω ∖ { 𝑖 } ) ) ) ∈ ( 2nd𝑢 ) } ⊆ ( 𝑀m ω )
82 33 81 elpwi2 { 𝑎 ∈ ( 𝑀m ω ) ∣ ∀ 𝑧𝑀 ( { ⟨ 𝑖 , 𝑧 ⟩ } ∪ ( 𝑎 ↾ ( ω ∖ { 𝑖 } ) ) ) ∈ ( 2nd𝑢 ) } ∈ 𝒫 ( 𝑀m ω )
83 eleq1 ( 𝑛 = { 𝑎 ∈ ( 𝑀m ω ) ∣ ∀ 𝑧𝑀 ( { ⟨ 𝑖 , 𝑧 ⟩ } ∪ ( 𝑎 ↾ ( ω ∖ { 𝑖 } ) ) ) ∈ ( 2nd𝑢 ) } → ( 𝑛 ∈ 𝒫 ( 𝑀m ω ) ↔ { 𝑎 ∈ ( 𝑀m ω ) ∣ ∀ 𝑧𝑀 ( { ⟨ 𝑖 , 𝑧 ⟩ } ∪ ( 𝑎 ↾ ( ω ∖ { 𝑖 } ) ) ) ∈ ( 2nd𝑢 ) } ∈ 𝒫 ( 𝑀m ω ) ) )
84 82 83 mpbiri ( 𝑛 = { 𝑎 ∈ ( 𝑀m ω ) ∣ ∀ 𝑧𝑀 ( { ⟨ 𝑖 , 𝑧 ⟩ } ∪ ( 𝑎 ↾ ( ω ∖ { 𝑖 } ) ) ) ∈ ( 2nd𝑢 ) } → 𝑛 ∈ 𝒫 ( 𝑀m ω ) )
85 84 adantl ( ( 𝑥 = ∀𝑔 𝑖 ( 1st𝑢 ) ∧ 𝑛 = { 𝑎 ∈ ( 𝑀m ω ) ∣ ∀ 𝑧𝑀 ( { ⟨ 𝑖 , 𝑧 ⟩ } ∪ ( 𝑎 ↾ ( ω ∖ { 𝑖 } ) ) ) ∈ ( 2nd𝑢 ) } ) → 𝑛 ∈ 𝒫 ( 𝑀m ω ) )
86 85 a1i ( 𝑖 ∈ ω → ( ( 𝑥 = ∀𝑔 𝑖 ( 1st𝑢 ) ∧ 𝑛 = { 𝑎 ∈ ( 𝑀m ω ) ∣ ∀ 𝑧𝑀 ( { ⟨ 𝑖 , 𝑧 ⟩ } ∪ ( 𝑎 ↾ ( ω ∖ { 𝑖 } ) ) ) ∈ ( 2nd𝑢 ) } ) → 𝑛 ∈ 𝒫 ( 𝑀m ω ) ) )
87 86 rexlimiv ( ∃ 𝑖 ∈ ω ( 𝑥 = ∀𝑔 𝑖 ( 1st𝑢 ) ∧ 𝑛 = { 𝑎 ∈ ( 𝑀m ω ) ∣ ∀ 𝑧𝑀 ( { ⟨ 𝑖 , 𝑧 ⟩ } ∪ ( 𝑎 ↾ ( ω ∖ { 𝑖 } ) ) ) ∈ ( 2nd𝑢 ) } ) → 𝑛 ∈ 𝒫 ( 𝑀m ω ) )
88 80 87 jaoi ( ( ∃ 𝑣 ∈ ( ( 𝑀 Sat 𝐸 ) ‘ 𝑏 ) ( 𝑥 = ( ( 1st𝑢 ) ⊼𝑔 ( 1st𝑣 ) ) ∧ 𝑛 = ( ( 𝑀m ω ) ∖ ( ( 2nd𝑢 ) ∩ ( 2nd𝑣 ) ) ) ) ∨ ∃ 𝑖 ∈ ω ( 𝑥 = ∀𝑔 𝑖 ( 1st𝑢 ) ∧ 𝑛 = { 𝑎 ∈ ( 𝑀m ω ) ∣ ∀ 𝑧𝑀 ( { ⟨ 𝑖 , 𝑧 ⟩ } ∪ ( 𝑎 ↾ ( ω ∖ { 𝑖 } ) ) ) ∈ ( 2nd𝑢 ) } ) ) → 𝑛 ∈ 𝒫 ( 𝑀m ω ) )
89 88 a1i ( 𝑢 ∈ ( ( 𝑀 Sat 𝐸 ) ‘ 𝑏 ) → ( ( ∃ 𝑣 ∈ ( ( 𝑀 Sat 𝐸 ) ‘ 𝑏 ) ( 𝑥 = ( ( 1st𝑢 ) ⊼𝑔 ( 1st𝑣 ) ) ∧ 𝑛 = ( ( 𝑀m ω ) ∖ ( ( 2nd𝑢 ) ∩ ( 2nd𝑣 ) ) ) ) ∨ ∃ 𝑖 ∈ ω ( 𝑥 = ∀𝑔 𝑖 ( 1st𝑢 ) ∧ 𝑛 = { 𝑎 ∈ ( 𝑀m ω ) ∣ ∀ 𝑧𝑀 ( { ⟨ 𝑖 , 𝑧 ⟩ } ∪ ( 𝑎 ↾ ( ω ∖ { 𝑖 } ) ) ) ∈ ( 2nd𝑢 ) } ) ) → 𝑛 ∈ 𝒫 ( 𝑀m ω ) ) )
90 89 rexlimiv ( ∃ 𝑢 ∈ ( ( 𝑀 Sat 𝐸 ) ‘ 𝑏 ) ( ∃ 𝑣 ∈ ( ( 𝑀 Sat 𝐸 ) ‘ 𝑏 ) ( 𝑥 = ( ( 1st𝑢 ) ⊼𝑔 ( 1st𝑣 ) ) ∧ 𝑛 = ( ( 𝑀m ω ) ∖ ( ( 2nd𝑢 ) ∩ ( 2nd𝑣 ) ) ) ) ∨ ∃ 𝑖 ∈ ω ( 𝑥 = ∀𝑔 𝑖 ( 1st𝑢 ) ∧ 𝑛 = { 𝑎 ∈ ( 𝑀m ω ) ∣ ∀ 𝑧𝑀 ( { ⟨ 𝑖 , 𝑧 ⟩ } ∪ ( 𝑎 ↾ ( ω ∖ { 𝑖 } ) ) ) ∈ ( 2nd𝑢 ) } ) ) → 𝑛 ∈ 𝒫 ( 𝑀m ω ) )
91 90 exlimiv ( ∃ 𝑥𝑢 ∈ ( ( 𝑀 Sat 𝐸 ) ‘ 𝑏 ) ( ∃ 𝑣 ∈ ( ( 𝑀 Sat 𝐸 ) ‘ 𝑏 ) ( 𝑥 = ( ( 1st𝑢 ) ⊼𝑔 ( 1st𝑣 ) ) ∧ 𝑛 = ( ( 𝑀m ω ) ∖ ( ( 2nd𝑢 ) ∩ ( 2nd𝑣 ) ) ) ) ∨ ∃ 𝑖 ∈ ω ( 𝑥 = ∀𝑔 𝑖 ( 1st𝑢 ) ∧ 𝑛 = { 𝑎 ∈ ( 𝑀m ω ) ∣ ∀ 𝑧𝑀 ( { ⟨ 𝑖 , 𝑧 ⟩ } ∪ ( 𝑎 ↾ ( ω ∖ { 𝑖 } ) ) ) ∈ ( 2nd𝑢 ) } ) ) → 𝑛 ∈ 𝒫 ( 𝑀m ω ) )
92 91 a1i ( ( ( 𝑏 ∈ ω ∧ ( ( 𝑀𝑉𝐸𝑊 ) → ( 𝑛 ∈ ran ( ( 𝑀 Sat 𝐸 ) ‘ 𝑏 ) → 𝑛 ∈ 𝒫 ( 𝑀m ω ) ) ) ) ∧ ( 𝑀𝑉𝐸𝑊 ) ) → ( ∃ 𝑥𝑢 ∈ ( ( 𝑀 Sat 𝐸 ) ‘ 𝑏 ) ( ∃ 𝑣 ∈ ( ( 𝑀 Sat 𝐸 ) ‘ 𝑏 ) ( 𝑥 = ( ( 1st𝑢 ) ⊼𝑔 ( 1st𝑣 ) ) ∧ 𝑛 = ( ( 𝑀m ω ) ∖ ( ( 2nd𝑢 ) ∩ ( 2nd𝑣 ) ) ) ) ∨ ∃ 𝑖 ∈ ω ( 𝑥 = ∀𝑔 𝑖 ( 1st𝑢 ) ∧ 𝑛 = { 𝑎 ∈ ( 𝑀m ω ) ∣ ∀ 𝑧𝑀 ( { ⟨ 𝑖 , 𝑧 ⟩ } ∪ ( 𝑎 ↾ ( ω ∖ { 𝑖 } ) ) ) ∈ ( 2nd𝑢 ) } ) ) → 𝑛 ∈ 𝒫 ( 𝑀m ω ) ) )
93 73 92 jaod ( ( ( 𝑏 ∈ ω ∧ ( ( 𝑀𝑉𝐸𝑊 ) → ( 𝑛 ∈ ran ( ( 𝑀 Sat 𝐸 ) ‘ 𝑏 ) → 𝑛 ∈ 𝒫 ( 𝑀m ω ) ) ) ) ∧ ( 𝑀𝑉𝐸𝑊 ) ) → ( ( 𝑛 ∈ ran ( ( 𝑀 Sat 𝐸 ) ‘ 𝑏 ) ∨ ∃ 𝑥𝑢 ∈ ( ( 𝑀 Sat 𝐸 ) ‘ 𝑏 ) ( ∃ 𝑣 ∈ ( ( 𝑀 Sat 𝐸 ) ‘ 𝑏 ) ( 𝑥 = ( ( 1st𝑢 ) ⊼𝑔 ( 1st𝑣 ) ) ∧ 𝑛 = ( ( 𝑀m ω ) ∖ ( ( 2nd𝑢 ) ∩ ( 2nd𝑣 ) ) ) ) ∨ ∃ 𝑖 ∈ ω ( 𝑥 = ∀𝑔 𝑖 ( 1st𝑢 ) ∧ 𝑛 = { 𝑎 ∈ ( 𝑀m ω ) ∣ ∀ 𝑧𝑀 ( { ⟨ 𝑖 , 𝑧 ⟩ } ∪ ( 𝑎 ↾ ( ω ∖ { 𝑖 } ) ) ) ∈ ( 2nd𝑢 ) } ) ) ) → 𝑛 ∈ 𝒫 ( 𝑀m ω ) ) )
94 71 93 sylbid ( ( ( 𝑏 ∈ ω ∧ ( ( 𝑀𝑉𝐸𝑊 ) → ( 𝑛 ∈ ran ( ( 𝑀 Sat 𝐸 ) ‘ 𝑏 ) → 𝑛 ∈ 𝒫 ( 𝑀m ω ) ) ) ) ∧ ( 𝑀𝑉𝐸𝑊 ) ) → ( 𝑛 ∈ ran ( ( 𝑀 Sat 𝐸 ) ‘ suc 𝑏 ) → 𝑛 ∈ 𝒫 ( 𝑀m ω ) ) )
95 94 exp31 ( 𝑏 ∈ ω → ( ( ( 𝑀𝑉𝐸𝑊 ) → ( 𝑛 ∈ ran ( ( 𝑀 Sat 𝐸 ) ‘ 𝑏 ) → 𝑛 ∈ 𝒫 ( 𝑀m ω ) ) ) → ( ( 𝑀𝑉𝐸𝑊 ) → ( 𝑛 ∈ ran ( ( 𝑀 Sat 𝐸 ) ‘ suc 𝑏 ) → 𝑛 ∈ 𝒫 ( 𝑀m ω ) ) ) ) )
96 5 10 15 20 45 95 finds ( 𝑁 ∈ ω → ( ( 𝑀𝑉𝐸𝑊 ) → ( 𝑛 ∈ ran ( ( 𝑀 Sat 𝐸 ) ‘ 𝑁 ) → 𝑛 ∈ 𝒫 ( 𝑀m ω ) ) ) )
97 96 com12 ( ( 𝑀𝑉𝐸𝑊 ) → ( 𝑁 ∈ ω → ( 𝑛 ∈ ran ( ( 𝑀 Sat 𝐸 ) ‘ 𝑁 ) → 𝑛 ∈ 𝒫 ( 𝑀m ω ) ) ) )
98 97 3impia ( ( 𝑀𝑉𝐸𝑊𝑁 ∈ ω ) → ( 𝑛 ∈ ran ( ( 𝑀 Sat 𝐸 ) ‘ 𝑁 ) → 𝑛 ∈ 𝒫 ( 𝑀m ω ) ) )
99 98 ssrdv ( ( 𝑀𝑉𝐸𝑊𝑁 ∈ ω ) → ran ( ( 𝑀 Sat 𝐸 ) ‘ 𝑁 ) ⊆ 𝒫 ( 𝑀m ω ) )