Metamath Proof Explorer


Theorem sb3b

Description: Simplified definition of substitution when variables are distinct. This is the biconditional strengthening of sb3 . Usage of this theorem is discouraged because it depends on ax-13 . (Contributed by BJ, 6-Oct-2018) Shorten sb3 . (Revised by Wolf Lammen, 21-Feb-2021) (New usage is discouraged.)

Ref Expression
Assertion sb3b
|- ( -. A. x x = y -> ( [ y / x ] ph <-> E. x ( x = y /\ ph ) ) )

Proof

Step Hyp Ref Expression
1 sb4b
 |-  ( -. A. x x = y -> ( [ y / x ] ph <-> A. x ( x = y -> ph ) ) )
2 equs5
 |-  ( -. A. x x = y -> ( E. x ( x = y /\ ph ) <-> A. x ( x = y -> ph ) ) )
3 1 2 bitr4d
 |-  ( -. A. x x = y -> ( [ y / x ] ph <-> E. x ( x = y /\ ph ) ) )