Metamath Proof Explorer


Theorem sb8euv

Description: Variable substitution in unique existential quantifier. Version of sb8eu requiring more disjoint variables, but fewer axioms. (Contributed by NM, 7-Aug-1994) (Revised by Wolf Lammen, 7-Feb-2023)

Ref Expression
Hypothesis sb8euv.nf
|- F/ y ph
Assertion sb8euv
|- ( E! x ph <-> E! y [ y / x ] ph )

Proof

Step Hyp Ref Expression
1 sb8euv.nf
 |-  F/ y ph
2 1 nfsbv
 |-  F/ y [ w / x ] ph
3 2 sb8eulem
 |-  ( E! x ph <-> E! y [ y / x ] ph )