| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							sb8eulem.nfsb | 
							 |-  F/ y [ w / x ] ph  | 
						
						
							| 2 | 
							
								
							 | 
							sb8v | 
							 |-  ( A. x ( ph <-> x = z ) <-> A. w [ w / x ] ( ph <-> x = z ) )  | 
						
						
							| 3 | 
							
								
							 | 
							equsb3 | 
							 |-  ( [ w / x ] x = z <-> w = z )  | 
						
						
							| 4 | 
							
								3
							 | 
							sblbis | 
							 |-  ( [ w / x ] ( ph <-> x = z ) <-> ( [ w / x ] ph <-> w = z ) )  | 
						
						
							| 5 | 
							
								4
							 | 
							albii | 
							 |-  ( A. w [ w / x ] ( ph <-> x = z ) <-> A. w ( [ w / x ] ph <-> w = z ) )  | 
						
						
							| 6 | 
							
								
							 | 
							nfv | 
							 |-  F/ y w = z  | 
						
						
							| 7 | 
							
								1 6
							 | 
							nfbi | 
							 |-  F/ y ( [ w / x ] ph <-> w = z )  | 
						
						
							| 8 | 
							
								
							 | 
							nfv | 
							 |-  F/ w ( [ y / x ] ph <-> y = z )  | 
						
						
							| 9 | 
							
								
							 | 
							sbequ | 
							 |-  ( w = y -> ( [ w / x ] ph <-> [ y / x ] ph ) )  | 
						
						
							| 10 | 
							
								
							 | 
							equequ1 | 
							 |-  ( w = y -> ( w = z <-> y = z ) )  | 
						
						
							| 11 | 
							
								9 10
							 | 
							bibi12d | 
							 |-  ( w = y -> ( ( [ w / x ] ph <-> w = z ) <-> ( [ y / x ] ph <-> y = z ) ) )  | 
						
						
							| 12 | 
							
								7 8 11
							 | 
							cbvalv1 | 
							 |-  ( A. w ( [ w / x ] ph <-> w = z ) <-> A. y ( [ y / x ] ph <-> y = z ) )  | 
						
						
							| 13 | 
							
								2 5 12
							 | 
							3bitri | 
							 |-  ( A. x ( ph <-> x = z ) <-> A. y ( [ y / x ] ph <-> y = z ) )  | 
						
						
							| 14 | 
							
								13
							 | 
							exbii | 
							 |-  ( E. z A. x ( ph <-> x = z ) <-> E. z A. y ( [ y / x ] ph <-> y = z ) )  | 
						
						
							| 15 | 
							
								
							 | 
							eu6 | 
							 |-  ( E! x ph <-> E. z A. x ( ph <-> x = z ) )  | 
						
						
							| 16 | 
							
								
							 | 
							eu6 | 
							 |-  ( E! y [ y / x ] ph <-> E. z A. y ( [ y / x ] ph <-> y = z ) )  | 
						
						
							| 17 | 
							
								14 15 16
							 | 
							3bitr4i | 
							 |-  ( E! x ph <-> E! y [ y / x ] ph )  |