Metamath Proof Explorer


Theorem sb8eulem

Description: Lemma. Factor out the common proof skeleton of sb8euv and sb8eu . Variable substitution in unique existential quantifier. (Contributed by NM, 7-Aug-1994) (Revised by Mario Carneiro, 7-Oct-2016) (Proof shortened by Wolf Lammen, 24-Aug-2019) Factor out common proof lines. (Revised by Wolf Lammen, 9-Feb-2023)

Ref Expression
Hypothesis sb8eulem.nfsb ywxφ
Assertion sb8eulem ∃!xφ∃!yyxφ

Proof

Step Hyp Ref Expression
1 sb8eulem.nfsb ywxφ
2 sb8v xφx=zwwxφx=z
3 equsb3 wxx=zw=z
4 3 sblbis wxφx=zwxφw=z
5 4 albii wwxφx=zwwxφw=z
6 nfv yw=z
7 1 6 nfbi ywxφw=z
8 nfv wyxφy=z
9 sbequ w=ywxφyxφ
10 equequ1 w=yw=zy=z
11 9 10 bibi12d w=ywxφw=zyxφy=z
12 7 8 11 cbvalv1 wwxφw=zyyxφy=z
13 2 5 12 3bitri xφx=zyyxφy=z
14 13 exbii zxφx=zzyyxφy=z
15 eu6 ∃!xφzxφx=z
16 eu6 ∃!yyxφzyyxφy=z
17 14 15 16 3bitr4i ∃!xφ∃!yyxφ