| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							sb8eulem.nfsb | 
							⊢ Ⅎ 𝑦 [ 𝑤  /  𝑥 ] 𝜑  | 
						
						
							| 2 | 
							
								
							 | 
							sb8v | 
							⊢ ( ∀ 𝑥 ( 𝜑  ↔  𝑥  =  𝑧 )  ↔  ∀ 𝑤 [ 𝑤  /  𝑥 ] ( 𝜑  ↔  𝑥  =  𝑧 ) )  | 
						
						
							| 3 | 
							
								
							 | 
							equsb3 | 
							⊢ ( [ 𝑤  /  𝑥 ] 𝑥  =  𝑧  ↔  𝑤  =  𝑧 )  | 
						
						
							| 4 | 
							
								3
							 | 
							sblbis | 
							⊢ ( [ 𝑤  /  𝑥 ] ( 𝜑  ↔  𝑥  =  𝑧 )  ↔  ( [ 𝑤  /  𝑥 ] 𝜑  ↔  𝑤  =  𝑧 ) )  | 
						
						
							| 5 | 
							
								4
							 | 
							albii | 
							⊢ ( ∀ 𝑤 [ 𝑤  /  𝑥 ] ( 𝜑  ↔  𝑥  =  𝑧 )  ↔  ∀ 𝑤 ( [ 𝑤  /  𝑥 ] 𝜑  ↔  𝑤  =  𝑧 ) )  | 
						
						
							| 6 | 
							
								
							 | 
							nfv | 
							⊢ Ⅎ 𝑦 𝑤  =  𝑧  | 
						
						
							| 7 | 
							
								1 6
							 | 
							nfbi | 
							⊢ Ⅎ 𝑦 ( [ 𝑤  /  𝑥 ] 𝜑  ↔  𝑤  =  𝑧 )  | 
						
						
							| 8 | 
							
								
							 | 
							nfv | 
							⊢ Ⅎ 𝑤 ( [ 𝑦  /  𝑥 ] 𝜑  ↔  𝑦  =  𝑧 )  | 
						
						
							| 9 | 
							
								
							 | 
							sbequ | 
							⊢ ( 𝑤  =  𝑦  →  ( [ 𝑤  /  𝑥 ] 𝜑  ↔  [ 𝑦  /  𝑥 ] 𝜑 ) )  | 
						
						
							| 10 | 
							
								
							 | 
							equequ1 | 
							⊢ ( 𝑤  =  𝑦  →  ( 𝑤  =  𝑧  ↔  𝑦  =  𝑧 ) )  | 
						
						
							| 11 | 
							
								9 10
							 | 
							bibi12d | 
							⊢ ( 𝑤  =  𝑦  →  ( ( [ 𝑤  /  𝑥 ] 𝜑  ↔  𝑤  =  𝑧 )  ↔  ( [ 𝑦  /  𝑥 ] 𝜑  ↔  𝑦  =  𝑧 ) ) )  | 
						
						
							| 12 | 
							
								7 8 11
							 | 
							cbvalv1 | 
							⊢ ( ∀ 𝑤 ( [ 𝑤  /  𝑥 ] 𝜑  ↔  𝑤  =  𝑧 )  ↔  ∀ 𝑦 ( [ 𝑦  /  𝑥 ] 𝜑  ↔  𝑦  =  𝑧 ) )  | 
						
						
							| 13 | 
							
								2 5 12
							 | 
							3bitri | 
							⊢ ( ∀ 𝑥 ( 𝜑  ↔  𝑥  =  𝑧 )  ↔  ∀ 𝑦 ( [ 𝑦  /  𝑥 ] 𝜑  ↔  𝑦  =  𝑧 ) )  | 
						
						
							| 14 | 
							
								13
							 | 
							exbii | 
							⊢ ( ∃ 𝑧 ∀ 𝑥 ( 𝜑  ↔  𝑥  =  𝑧 )  ↔  ∃ 𝑧 ∀ 𝑦 ( [ 𝑦  /  𝑥 ] 𝜑  ↔  𝑦  =  𝑧 ) )  | 
						
						
							| 15 | 
							
								
							 | 
							eu6 | 
							⊢ ( ∃! 𝑥 𝜑  ↔  ∃ 𝑧 ∀ 𝑥 ( 𝜑  ↔  𝑥  =  𝑧 ) )  | 
						
						
							| 16 | 
							
								
							 | 
							eu6 | 
							⊢ ( ∃! 𝑦 [ 𝑦  /  𝑥 ] 𝜑  ↔  ∃ 𝑧 ∀ 𝑦 ( [ 𝑦  /  𝑥 ] 𝜑  ↔  𝑦  =  𝑧 ) )  | 
						
						
							| 17 | 
							
								14 15 16
							 | 
							3bitr4i | 
							⊢ ( ∃! 𝑥 𝜑  ↔  ∃! 𝑦 [ 𝑦  /  𝑥 ] 𝜑 )  |