| Step | Hyp | Ref | Expression | 
						
							| 1 |  | sbcbr123 |  |-  ( [. A / x ]. B R C <-> [_ A / x ]_ B [_ A / x ]_ R [_ A / x ]_ C ) | 
						
							| 2 |  | csbconstg |  |-  ( A e. _V -> [_ A / x ]_ B = B ) | 
						
							| 3 |  | csbconstg |  |-  ( A e. _V -> [_ A / x ]_ C = C ) | 
						
							| 4 | 2 3 | breq12d |  |-  ( A e. _V -> ( [_ A / x ]_ B [_ A / x ]_ R [_ A / x ]_ C <-> B [_ A / x ]_ R C ) ) | 
						
							| 5 |  | br0 |  |-  -. [_ A / x ]_ B (/) [_ A / x ]_ C | 
						
							| 6 |  | csbprc |  |-  ( -. A e. _V -> [_ A / x ]_ R = (/) ) | 
						
							| 7 | 6 | breqd |  |-  ( -. A e. _V -> ( [_ A / x ]_ B [_ A / x ]_ R [_ A / x ]_ C <-> [_ A / x ]_ B (/) [_ A / x ]_ C ) ) | 
						
							| 8 | 5 7 | mtbiri |  |-  ( -. A e. _V -> -. [_ A / x ]_ B [_ A / x ]_ R [_ A / x ]_ C ) | 
						
							| 9 |  | br0 |  |-  -. B (/) C | 
						
							| 10 | 6 | breqd |  |-  ( -. A e. _V -> ( B [_ A / x ]_ R C <-> B (/) C ) ) | 
						
							| 11 | 9 10 | mtbiri |  |-  ( -. A e. _V -> -. B [_ A / x ]_ R C ) | 
						
							| 12 | 8 11 | 2falsed |  |-  ( -. A e. _V -> ( [_ A / x ]_ B [_ A / x ]_ R [_ A / x ]_ C <-> B [_ A / x ]_ R C ) ) | 
						
							| 13 | 4 12 | pm2.61i |  |-  ( [_ A / x ]_ B [_ A / x ]_ R [_ A / x ]_ C <-> B [_ A / x ]_ R C ) | 
						
							| 14 | 1 13 | bitri |  |-  ( [. A / x ]. B R C <-> B [_ A / x ]_ R C ) |