Description: Formula-building inference for class substitution. General version of sbcbii . (Contributed by GG, 1-Sep-2025)
Ref | Expression | ||
---|---|---|---|
Hypotheses | sbceqbii.1 | |- A = B |
|
sbceqbii.2 | |- ( ph <-> ps ) |
||
Assertion | sbceqbii | |- ( [. A / x ]. ph <-> [. B / x ]. ps ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbceqbii.1 | |- A = B |
|
2 | sbceqbii.2 | |- ( ph <-> ps ) |
|
3 | 2 | abbii | |- { x | ph } = { x | ps } |
4 | 1 3 | eleq12i | |- ( A e. { x | ph } <-> B e. { x | ps } ) |
5 | df-sbc | |- ( [. A / x ]. ph <-> A e. { x | ph } ) |
|
6 | df-sbc | |- ( [. B / x ]. ps <-> B e. { x | ps } ) |
|
7 | 4 5 6 | 3bitr4i | |- ( [. A / x ]. ph <-> [. B / x ]. ps ) |