Metamath Proof Explorer


Theorem sbceqbii

Description: Formula-building inference for class substitution. General version of sbcbii . (Contributed by GG, 1-Sep-2025)

Ref Expression
Hypotheses sbceqbii.1
|- A = B
sbceqbii.2
|- ( ph <-> ps )
Assertion sbceqbii
|- ( [. A / x ]. ph <-> [. B / x ]. ps )

Proof

Step Hyp Ref Expression
1 sbceqbii.1
 |-  A = B
2 sbceqbii.2
 |-  ( ph <-> ps )
3 2 abbii
 |-  { x | ph } = { x | ps }
4 1 3 eleq12i
 |-  ( A e. { x | ph } <-> B e. { x | ps } )
5 df-sbc
 |-  ( [. A / x ]. ph <-> A e. { x | ph } )
6 df-sbc
 |-  ( [. B / x ]. ps <-> B e. { x | ps } )
7 4 5 6 3bitr4i
 |-  ( [. A / x ]. ph <-> [. B / x ]. ps )