Metamath Proof Explorer


Theorem sbceqbii

Description: Formula-building inference for class substitution. General version of sbcbii . (Contributed by GG, 1-Sep-2025)

Ref Expression
Hypotheses sbceqbii.1 A = B
sbceqbii.2 φ ψ
Assertion sbceqbii [˙A / x]˙ φ [˙B / x]˙ ψ

Proof

Step Hyp Ref Expression
1 sbceqbii.1 A = B
2 sbceqbii.2 φ ψ
3 2 abbii x | φ = x | ψ
4 1 3 eleq12i A x | φ B x | ψ
5 df-sbc [˙A / x]˙ φ A x | φ
6 df-sbc [˙B / x]˙ ψ B x | ψ
7 4 5 6 3bitr4i [˙A / x]˙ φ [˙B / x]˙ ψ