Metamath Proof Explorer


Theorem disjeq1i

Description: Equality theorem for disjoint collection. Inference version. (Contributed by GG, 1-Sep-2025)

Ref Expression
Hypothesis disjeq1i.1 A = B
Assertion disjeq1i Disj x A C Disj x B C

Proof

Step Hyp Ref Expression
1 disjeq1i.1 A = B
2 1 rmoeqi * x A t C * x B t C
3 2 albii t * x A t C t * x B t C
4 df-disj Disj x A C t * x A t C
5 df-disj Disj x B C t * x B t C
6 3 4 5 3bitr4i Disj x A C Disj x B C