Metamath Proof Explorer


Theorem disjeq12i

Description: Equality theorem for disjoint collection. Inference version. (Contributed by GG, 1-Sep-2025)

Ref Expression
Hypotheses disjeq12i.1 A = B
disjeq12i.2 C = D
Assertion disjeq12i Disj x A C Disj x B D

Proof

Step Hyp Ref Expression
1 disjeq12i.1 A = B
2 disjeq12i.2 C = D
3 disjeq2 x A C = D Disj x A C Disj x A D
4 2 a1i x A C = D
5 3 4 mprg Disj x A C Disj x A D
6 1 disjeq1i Disj x A D Disj x B D
7 5 6 bitri Disj x A C Disj x B D