Metamath Proof Explorer


Theorem disjeq2

Description: Equality theorem for disjoint collection. (Contributed by Mario Carneiro, 14-Nov-2016)

Ref Expression
Assertion disjeq2 xAB=CDisjxABDisjxAC

Proof

Step Hyp Ref Expression
1 eqimss2 B=CCB
2 1 ralimi xAB=CxACB
3 disjss2 xACBDisjxABDisjxAC
4 2 3 syl xAB=CDisjxABDisjxAC
5 eqimss B=CBC
6 5 ralimi xAB=CxABC
7 disjss2 xABCDisjxACDisjxAB
8 6 7 syl xAB=CDisjxACDisjxAB
9 4 8 impbid xAB=CDisjxABDisjxAC