Description: Equality theorem for disjoint collection. Inference version. (Contributed by GG, 1-Sep-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | disjeq12i.1 | |- A = B |
|
| disjeq12i.2 | |- C = D |
||
| Assertion | disjeq12i | |- ( Disj_ x e. A C <-> Disj_ x e. B D ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | disjeq12i.1 | |- A = B |
|
| 2 | disjeq12i.2 | |- C = D |
|
| 3 | disjeq2 | |- ( A. x e. A C = D -> ( Disj_ x e. A C <-> Disj_ x e. A D ) ) |
|
| 4 | 2 | a1i | |- ( x e. A -> C = D ) |
| 5 | 3 4 | mprg | |- ( Disj_ x e. A C <-> Disj_ x e. A D ) |
| 6 | 1 | disjeq1i | |- ( Disj_ x e. A D <-> Disj_ x e. B D ) |
| 7 | 5 6 | bitri | |- ( Disj_ x e. A C <-> Disj_ x e. B D ) |