Description: Equality theorem for restricted class abstractions. Inference version. (Contributed by GG, 1-Sep-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | rabeqbii.1 | |- A = B |
|
| rabeqbii.2 | |- ( ph <-> ps ) |
||
| Assertion | rabeqbii | |- { x e. A | ph } = { x e. B | ps } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rabeqbii.1 | |- A = B |
|
| 2 | rabeqbii.2 | |- ( ph <-> ps ) |
|
| 3 | 1 | eleq2i | |- ( x e. A <-> x e. B ) |
| 4 | 3 2 | anbi12i | |- ( ( x e. A /\ ph ) <-> ( x e. B /\ ps ) ) |
| 5 | 4 | abbii | |- { x | ( x e. A /\ ph ) } = { x | ( x e. B /\ ps ) } |
| 6 | df-rab | |- { x e. A | ph } = { x | ( x e. A /\ ph ) } |
|
| 7 | df-rab | |- { x e. B | ps } = { x | ( x e. B /\ ps ) } |
|
| 8 | 5 6 7 | 3eqtr4i | |- { x e. A | ph } = { x e. B | ps } |