Metamath Proof Explorer


Theorem rabeqbii

Description: Equality theorem for restricted class abstractions. Inference version. (Contributed by GG, 1-Sep-2025)

Ref Expression
Hypotheses rabeqbii.1 A = B
rabeqbii.2 φ ψ
Assertion rabeqbii x A | φ = x B | ψ

Proof

Step Hyp Ref Expression
1 rabeqbii.1 A = B
2 rabeqbii.2 φ ψ
3 1 eleq2i x A x B
4 3 2 anbi12i x A φ x B ψ
5 4 abbii x | x A φ = x | x B ψ
6 df-rab x A | φ = x | x A φ
7 df-rab x B | ψ = x | x B ψ
8 5 6 7 3eqtr4i x A | φ = x B | ψ