Description: Equality theorem for restricted class abstractions. Inference version. (Contributed by GG, 1-Sep-2025)
Ref | Expression | ||
---|---|---|---|
Hypotheses | rabeqbii.1 | ⊢ 𝐴 = 𝐵 | |
rabeqbii.2 | ⊢ ( 𝜑 ↔ 𝜓 ) | ||
Assertion | rabeqbii | ⊢ { 𝑥 ∈ 𝐴 ∣ 𝜑 } = { 𝑥 ∈ 𝐵 ∣ 𝜓 } |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rabeqbii.1 | ⊢ 𝐴 = 𝐵 | |
2 | rabeqbii.2 | ⊢ ( 𝜑 ↔ 𝜓 ) | |
3 | 1 | eleq2i | ⊢ ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) |
4 | 3 2 | anbi12i | ⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ↔ ( 𝑥 ∈ 𝐵 ∧ 𝜓 ) ) |
5 | 4 | abbii | ⊢ { 𝑥 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) } = { 𝑥 ∣ ( 𝑥 ∈ 𝐵 ∧ 𝜓 ) } |
6 | df-rab | ⊢ { 𝑥 ∈ 𝐴 ∣ 𝜑 } = { 𝑥 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) } | |
7 | df-rab | ⊢ { 𝑥 ∈ 𝐵 ∣ 𝜓 } = { 𝑥 ∣ ( 𝑥 ∈ 𝐵 ∧ 𝜓 ) } | |
8 | 5 6 7 | 3eqtr4i | ⊢ { 𝑥 ∈ 𝐴 ∣ 𝜑 } = { 𝑥 ∈ 𝐵 ∣ 𝜓 } |