| Step |
Hyp |
Ref |
Expression |
| 1 |
|
sbcssg |
|- ( A e. V -> ( [. A / x ]. ( B " C ) C_ C <-> [_ A / x ]_ ( B " C ) C_ [_ A / x ]_ C ) ) |
| 2 |
|
csbima12 |
|- [_ A / x ]_ ( B " C ) = ( [_ A / x ]_ B " [_ A / x ]_ C ) |
| 3 |
2
|
a1i |
|- ( A e. V -> [_ A / x ]_ ( B " C ) = ( [_ A / x ]_ B " [_ A / x ]_ C ) ) |
| 4 |
3
|
sseq1d |
|- ( A e. V -> ( [_ A / x ]_ ( B " C ) C_ [_ A / x ]_ C <-> ( [_ A / x ]_ B " [_ A / x ]_ C ) C_ [_ A / x ]_ C ) ) |
| 5 |
1 4
|
bitrd |
|- ( A e. V -> ( [. A / x ]. ( B " C ) C_ C <-> ( [_ A / x ]_ B " [_ A / x ]_ C ) C_ [_ A / x ]_ C ) ) |
| 6 |
|
df-he |
|- ( B hereditary C <-> ( B " C ) C_ C ) |
| 7 |
6
|
sbcbii |
|- ( [. A / x ]. B hereditary C <-> [. A / x ]. ( B " C ) C_ C ) |
| 8 |
|
df-he |
|- ( [_ A / x ]_ B hereditary [_ A / x ]_ C <-> ( [_ A / x ]_ B " [_ A / x ]_ C ) C_ [_ A / x ]_ C ) |
| 9 |
5 7 8
|
3bitr4g |
|- ( A e. V -> ( [. A / x ]. B hereditary C <-> [_ A / x ]_ B hereditary [_ A / x ]_ C ) ) |