Metamath Proof Explorer


Theorem sbcheg

Description: Distribute proper substitution through herditary relation. (Contributed by RP, 29-Jun-2020)

Ref Expression
Assertion sbcheg
|- ( A e. V -> ( [. A / x ]. B hereditary C <-> [_ A / x ]_ B hereditary [_ A / x ]_ C ) )

Proof

Step Hyp Ref Expression
1 sbcssg
 |-  ( A e. V -> ( [. A / x ]. ( B " C ) C_ C <-> [_ A / x ]_ ( B " C ) C_ [_ A / x ]_ C ) )
2 csbima12
 |-  [_ A / x ]_ ( B " C ) = ( [_ A / x ]_ B " [_ A / x ]_ C )
3 2 a1i
 |-  ( A e. V -> [_ A / x ]_ ( B " C ) = ( [_ A / x ]_ B " [_ A / x ]_ C ) )
4 3 sseq1d
 |-  ( A e. V -> ( [_ A / x ]_ ( B " C ) C_ [_ A / x ]_ C <-> ( [_ A / x ]_ B " [_ A / x ]_ C ) C_ [_ A / x ]_ C ) )
5 1 4 bitrd
 |-  ( A e. V -> ( [. A / x ]. ( B " C ) C_ C <-> ( [_ A / x ]_ B " [_ A / x ]_ C ) C_ [_ A / x ]_ C ) )
6 df-he
 |-  ( B hereditary C <-> ( B " C ) C_ C )
7 6 sbcbii
 |-  ( [. A / x ]. B hereditary C <-> [. A / x ]. ( B " C ) C_ C )
8 df-he
 |-  ( [_ A / x ]_ B hereditary [_ A / x ]_ C <-> ( [_ A / x ]_ B " [_ A / x ]_ C ) C_ [_ A / x ]_ C )
9 5 7 8 3bitr4g
 |-  ( A e. V -> ( [. A / x ]. B hereditary C <-> [_ A / x ]_ B hereditary [_ A / x ]_ C ) )