Step |
Hyp |
Ref |
Expression |
1 |
|
sbcies.a |
|- A = ( E ` W ) |
2 |
|
sbcies.1 |
|- ( a = A -> ( ph <-> ps ) ) |
3 |
|
fvexd |
|- ( w = W -> ( E ` w ) e. _V ) |
4 |
|
simpr |
|- ( ( w = W /\ a = ( E ` w ) ) -> a = ( E ` w ) ) |
5 |
|
fveq2 |
|- ( w = W -> ( E ` w ) = ( E ` W ) ) |
6 |
1 5
|
eqtr4id |
|- ( w = W -> A = ( E ` w ) ) |
7 |
6
|
adantr |
|- ( ( w = W /\ a = ( E ` w ) ) -> A = ( E ` w ) ) |
8 |
4 7
|
eqtr4d |
|- ( ( w = W /\ a = ( E ` w ) ) -> a = A ) |
9 |
8 2
|
syl |
|- ( ( w = W /\ a = ( E ` w ) ) -> ( ph <-> ps ) ) |
10 |
9
|
bicomd |
|- ( ( w = W /\ a = ( E ` w ) ) -> ( ps <-> ph ) ) |
11 |
3 10
|
sbcied |
|- ( w = W -> ( [. ( E ` w ) / a ]. ps <-> ph ) ) |