Metamath Proof Explorer


Theorem sbcies

Description: A special version of class substitution commonly used for structures. (Contributed by Thierry Arnoux, 14-Mar-2019)

Ref Expression
Hypotheses sbcies.a
|- A = ( E ` W )
sbcies.1
|- ( a = A -> ( ph <-> ps ) )
Assertion sbcies
|- ( w = W -> ( [. ( E ` w ) / a ]. ps <-> ph ) )

Proof

Step Hyp Ref Expression
1 sbcies.a
 |-  A = ( E ` W )
2 sbcies.1
 |-  ( a = A -> ( ph <-> ps ) )
3 fvexd
 |-  ( w = W -> ( E ` w ) e. _V )
4 simpr
 |-  ( ( w = W /\ a = ( E ` w ) ) -> a = ( E ` w ) )
5 fveq2
 |-  ( w = W -> ( E ` w ) = ( E ` W ) )
6 1 5 eqtr4id
 |-  ( w = W -> A = ( E ` w ) )
7 6 adantr
 |-  ( ( w = W /\ a = ( E ` w ) ) -> A = ( E ` w ) )
8 4 7 eqtr4d
 |-  ( ( w = W /\ a = ( E ` w ) ) -> a = A )
9 8 2 syl
 |-  ( ( w = W /\ a = ( E ` w ) ) -> ( ph <-> ps ) )
10 9 bicomd
 |-  ( ( w = W /\ a = ( E ` w ) ) -> ( ps <-> ph ) )
11 3 10 sbcied
 |-  ( w = W -> ( [. ( E ` w ) / a ]. ps <-> ph ) )