| Step |
Hyp |
Ref |
Expression |
| 1 |
|
sbcies.a |
⊢ 𝐴 = ( 𝐸 ‘ 𝑊 ) |
| 2 |
|
sbcies.1 |
⊢ ( 𝑎 = 𝐴 → ( 𝜑 ↔ 𝜓 ) ) |
| 3 |
|
fvexd |
⊢ ( 𝑤 = 𝑊 → ( 𝐸 ‘ 𝑤 ) ∈ V ) |
| 4 |
|
simpr |
⊢ ( ( 𝑤 = 𝑊 ∧ 𝑎 = ( 𝐸 ‘ 𝑤 ) ) → 𝑎 = ( 𝐸 ‘ 𝑤 ) ) |
| 5 |
|
fveq2 |
⊢ ( 𝑤 = 𝑊 → ( 𝐸 ‘ 𝑤 ) = ( 𝐸 ‘ 𝑊 ) ) |
| 6 |
1 5
|
eqtr4id |
⊢ ( 𝑤 = 𝑊 → 𝐴 = ( 𝐸 ‘ 𝑤 ) ) |
| 7 |
6
|
adantr |
⊢ ( ( 𝑤 = 𝑊 ∧ 𝑎 = ( 𝐸 ‘ 𝑤 ) ) → 𝐴 = ( 𝐸 ‘ 𝑤 ) ) |
| 8 |
4 7
|
eqtr4d |
⊢ ( ( 𝑤 = 𝑊 ∧ 𝑎 = ( 𝐸 ‘ 𝑤 ) ) → 𝑎 = 𝐴 ) |
| 9 |
8 2
|
syl |
⊢ ( ( 𝑤 = 𝑊 ∧ 𝑎 = ( 𝐸 ‘ 𝑤 ) ) → ( 𝜑 ↔ 𝜓 ) ) |
| 10 |
9
|
bicomd |
⊢ ( ( 𝑤 = 𝑊 ∧ 𝑎 = ( 𝐸 ‘ 𝑤 ) ) → ( 𝜓 ↔ 𝜑 ) ) |
| 11 |
3 10
|
sbcied |
⊢ ( 𝑤 = 𝑊 → ( [ ( 𝐸 ‘ 𝑤 ) / 𝑎 ] 𝜓 ↔ 𝜑 ) ) |