Step |
Hyp |
Ref |
Expression |
1 |
|
sbcies.a |
⊢ 𝐴 = ( 𝐸 ‘ 𝑊 ) |
2 |
|
sbcies.1 |
⊢ ( 𝑎 = 𝐴 → ( 𝜑 ↔ 𝜓 ) ) |
3 |
|
fvexd |
⊢ ( 𝑤 = 𝑊 → ( 𝐸 ‘ 𝑤 ) ∈ V ) |
4 |
|
simpr |
⊢ ( ( 𝑤 = 𝑊 ∧ 𝑎 = ( 𝐸 ‘ 𝑤 ) ) → 𝑎 = ( 𝐸 ‘ 𝑤 ) ) |
5 |
|
fveq2 |
⊢ ( 𝑤 = 𝑊 → ( 𝐸 ‘ 𝑤 ) = ( 𝐸 ‘ 𝑊 ) ) |
6 |
1 5
|
eqtr4id |
⊢ ( 𝑤 = 𝑊 → 𝐴 = ( 𝐸 ‘ 𝑤 ) ) |
7 |
6
|
adantr |
⊢ ( ( 𝑤 = 𝑊 ∧ 𝑎 = ( 𝐸 ‘ 𝑤 ) ) → 𝐴 = ( 𝐸 ‘ 𝑤 ) ) |
8 |
4 7
|
eqtr4d |
⊢ ( ( 𝑤 = 𝑊 ∧ 𝑎 = ( 𝐸 ‘ 𝑤 ) ) → 𝑎 = 𝐴 ) |
9 |
8 2
|
syl |
⊢ ( ( 𝑤 = 𝑊 ∧ 𝑎 = ( 𝐸 ‘ 𝑤 ) ) → ( 𝜑 ↔ 𝜓 ) ) |
10 |
9
|
bicomd |
⊢ ( ( 𝑤 = 𝑊 ∧ 𝑎 = ( 𝐸 ‘ 𝑤 ) ) → ( 𝜓 ↔ 𝜑 ) ) |
11 |
3 10
|
sbcied |
⊢ ( 𝑤 = 𝑊 → ( [ ( 𝐸 ‘ 𝑤 ) / 𝑎 ] 𝜓 ↔ 𝜑 ) ) |