Description: If x = y always implies x = z , then y = z . (Contributed by Andrew Salmon, 2-Jun-2011)
Ref | Expression | ||
---|---|---|---|
Assertion | sbeqal1 | |- ( A. x ( x = y -> x = z ) -> y = z ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sb2 | |- ( A. x ( x = y -> x = z ) -> [ y / x ] x = z ) |
|
2 | equsb3 | |- ( [ y / x ] x = z <-> y = z ) |
|
3 | 1 2 | sylib | |- ( A. x ( x = y -> x = z ) -> y = z ) |