Description: If x = y always implies x = z , then y = z . (Contributed by Andrew Salmon, 2-Jun-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | sbeqal1 | |- ( A. x ( x = y -> x = z ) -> y = z ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | sb2 | |- ( A. x ( x = y -> x = z ) -> [ y / x ] x = z ) | |
| 2 | equsb3 | |- ( [ y / x ] x = z <-> y = z ) | |
| 3 | 1 2 | sylib | |- ( A. x ( x = y -> x = z ) -> y = z ) |