Metamath Proof Explorer


Theorem sbeqal1

Description: If x = y always implies x = z , then y = z . (Contributed by Andrew Salmon, 2-Jun-2011)

Ref Expression
Assertion sbeqal1 x x = y x = z y = z

Proof

Step Hyp Ref Expression
1 sb2 x x = y x = z y x x = z
2 equsb3 y x x = z y = z
3 1 2 sylib x x = y x = z y = z