Description: If x = y always implies x = z , then y = z . (Contributed by Andrew Salmon, 2-Jun-2011)
Ref | Expression | ||
---|---|---|---|
Assertion | sbeqal1 | ⊢ ( ∀ 𝑥 ( 𝑥 = 𝑦 → 𝑥 = 𝑧 ) → 𝑦 = 𝑧 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sb2 | ⊢ ( ∀ 𝑥 ( 𝑥 = 𝑦 → 𝑥 = 𝑧 ) → [ 𝑦 / 𝑥 ] 𝑥 = 𝑧 ) | |
2 | equsb3 | ⊢ ( [ 𝑦 / 𝑥 ] 𝑥 = 𝑧 ↔ 𝑦 = 𝑧 ) | |
3 | 1 2 | sylib | ⊢ ( ∀ 𝑥 ( 𝑥 = 𝑦 → 𝑥 = 𝑧 ) → 𝑦 = 𝑧 ) |