Metamath Proof Explorer


Theorem sbh

Description: Substitution for a variable not free in a wff does not affect it. (Contributed by NM, 14-May-1993)

Ref Expression
Hypothesis sbh.1
|- ( ph -> A. x ph )
Assertion sbh
|- ( [ y / x ] ph <-> ph )

Proof

Step Hyp Ref Expression
1 sbh.1
 |-  ( ph -> A. x ph )
2 1 nf5i
 |-  F/ x ph
3 2 sbf
 |-  ( [ y / x ] ph <-> ph )