| Step | Hyp | Ref | Expression | 
						
							| 1 |  | sbhypf.1 |  |-  F/ x ps | 
						
							| 2 |  | sbhypf.2 |  |-  ( x = A -> ( ph <-> ps ) ) | 
						
							| 3 |  | eqeq1 |  |-  ( x = y -> ( x = A <-> y = A ) ) | 
						
							| 4 | 3 | equsexvw |  |-  ( E. x ( x = y /\ x = A ) <-> y = A ) | 
						
							| 5 |  | nfs1v |  |-  F/ x [ y / x ] ph | 
						
							| 6 | 5 1 | nfbi |  |-  F/ x ( [ y / x ] ph <-> ps ) | 
						
							| 7 |  | sbequ12 |  |-  ( x = y -> ( ph <-> [ y / x ] ph ) ) | 
						
							| 8 | 7 | bicomd |  |-  ( x = y -> ( [ y / x ] ph <-> ph ) ) | 
						
							| 9 | 8 2 | sylan9bb |  |-  ( ( x = y /\ x = A ) -> ( [ y / x ] ph <-> ps ) ) | 
						
							| 10 | 6 9 | exlimi |  |-  ( E. x ( x = y /\ x = A ) -> ( [ y / x ] ph <-> ps ) ) | 
						
							| 11 | 4 10 | sylbir |  |-  ( y = A -> ( [ y / x ] ph <-> ps ) ) |