Metamath Proof Explorer


Theorem scottabes

Description: Value of the Scott operation at a class abstraction. Variant of scottab using explicit substitution. (Contributed by Rohan Ridenour, 14-Aug-2023)

Ref Expression
Assertion scottabes
|- Scott { x | ph } = { x | ( ph /\ A. y ( [ y / x ] ph -> ( rank ` x ) C_ ( rank ` y ) ) ) }

Proof

Step Hyp Ref Expression
1 nfs1v
 |-  F/ x [ y / x ] ph
2 sbequ12
 |-  ( x = y -> ( ph <-> [ y / x ] ph ) )
3 1 2 scottabf
 |-  Scott { x | ph } = { x | ( ph /\ A. y ( [ y / x ] ph -> ( rank ` x ) C_ ( rank ` y ) ) ) }