Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Rohan Ridenour
Shorter primitive equivalent of ax-groth
Grothendieck universes are closed under collection
scottabes
Metamath Proof Explorer
Description: Value of the Scott operation at a class abstraction. Variant of
scottab using explicit substitution. (Contributed by Rohan Ridenour , 14-Aug-2023)
Ref
Expression
Assertion
scottabes
⊢ Scott { 𝑥 ∣ 𝜑 } = { 𝑥 ∣ ( 𝜑 ∧ ∀ 𝑦 ( [ 𝑦 / 𝑥 ] 𝜑 → ( rank ‘ 𝑥 ) ⊆ ( rank ‘ 𝑦 ) ) ) }
Proof
Step
Hyp
Ref
Expression
1
nfs1v
⊢ Ⅎ 𝑥 [ 𝑦 / 𝑥 ] 𝜑
2
sbequ12
⊢ ( 𝑥 = 𝑦 → ( 𝜑 ↔ [ 𝑦 / 𝑥 ] 𝜑 ) )
3
1 2
scottabf
⊢ Scott { 𝑥 ∣ 𝜑 } = { 𝑥 ∣ ( 𝜑 ∧ ∀ 𝑦 ( [ 𝑦 / 𝑥 ] 𝜑 → ( rank ‘ 𝑥 ) ⊆ ( rank ‘ 𝑦 ) ) ) }