Step |
Hyp |
Ref |
Expression |
1 |
|
scottabf.1 |
⊢ Ⅎ 𝑥 𝜓 |
2 |
|
scottabf.2 |
⊢ ( 𝑥 = 𝑦 → ( 𝜑 ↔ 𝜓 ) ) |
3 |
|
df-scott |
⊢ Scott { 𝑥 ∣ 𝜑 } = { 𝑧 ∈ { 𝑥 ∣ 𝜑 } ∣ ∀ 𝑤 ∈ { 𝑥 ∣ 𝜑 } ( rank ‘ 𝑧 ) ⊆ ( rank ‘ 𝑤 ) } |
4 |
|
df-rab |
⊢ { 𝑧 ∈ { 𝑥 ∣ 𝜑 } ∣ ∀ 𝑤 ∈ { 𝑥 ∣ 𝜑 } ( rank ‘ 𝑧 ) ⊆ ( rank ‘ 𝑤 ) } = { 𝑧 ∣ ( 𝑧 ∈ { 𝑥 ∣ 𝜑 } ∧ ∀ 𝑤 ∈ { 𝑥 ∣ 𝜑 } ( rank ‘ 𝑧 ) ⊆ ( rank ‘ 𝑤 ) ) } |
5 |
|
abeq1 |
⊢ ( { 𝑧 ∣ ( 𝑧 ∈ { 𝑥 ∣ 𝜑 } ∧ ∀ 𝑤 ∈ { 𝑥 ∣ 𝜑 } ( rank ‘ 𝑧 ) ⊆ ( rank ‘ 𝑤 ) ) } = { 𝑥 ∣ ( 𝜑 ∧ ∀ 𝑦 ( 𝜓 → ( rank ‘ 𝑥 ) ⊆ ( rank ‘ 𝑦 ) ) ) } ↔ ∀ 𝑧 ( ( 𝑧 ∈ { 𝑥 ∣ 𝜑 } ∧ ∀ 𝑤 ∈ { 𝑥 ∣ 𝜑 } ( rank ‘ 𝑧 ) ⊆ ( rank ‘ 𝑤 ) ) ↔ 𝑧 ∈ { 𝑥 ∣ ( 𝜑 ∧ ∀ 𝑦 ( 𝜓 → ( rank ‘ 𝑥 ) ⊆ ( rank ‘ 𝑦 ) ) ) } ) ) |
6 |
|
nfsab1 |
⊢ Ⅎ 𝑥 𝑧 ∈ { 𝑥 ∣ 𝜑 } |
7 |
|
nfab1 |
⊢ Ⅎ 𝑥 { 𝑥 ∣ 𝜑 } |
8 |
|
nfv |
⊢ Ⅎ 𝑥 ( rank ‘ 𝑧 ) ⊆ ( rank ‘ 𝑤 ) |
9 |
7 8
|
nfralw |
⊢ Ⅎ 𝑥 ∀ 𝑤 ∈ { 𝑥 ∣ 𝜑 } ( rank ‘ 𝑧 ) ⊆ ( rank ‘ 𝑤 ) |
10 |
6 9
|
nfan |
⊢ Ⅎ 𝑥 ( 𝑧 ∈ { 𝑥 ∣ 𝜑 } ∧ ∀ 𝑤 ∈ { 𝑥 ∣ 𝜑 } ( rank ‘ 𝑧 ) ⊆ ( rank ‘ 𝑤 ) ) |
11 |
|
vex |
⊢ 𝑧 ∈ V |
12 |
|
abid |
⊢ ( 𝑥 ∈ { 𝑥 ∣ 𝜑 } ↔ 𝜑 ) |
13 |
|
eleq1w |
⊢ ( 𝑥 = 𝑧 → ( 𝑥 ∈ { 𝑥 ∣ 𝜑 } ↔ 𝑧 ∈ { 𝑥 ∣ 𝜑 } ) ) |
14 |
12 13
|
bitr3id |
⊢ ( 𝑥 = 𝑧 → ( 𝜑 ↔ 𝑧 ∈ { 𝑥 ∣ 𝜑 } ) ) |
15 |
|
df-clab |
⊢ ( 𝑦 ∈ { 𝑥 ∣ 𝜑 } ↔ [ 𝑦 / 𝑥 ] 𝜑 ) |
16 |
1 2
|
sbiev |
⊢ ( [ 𝑦 / 𝑥 ] 𝜑 ↔ 𝜓 ) |
17 |
15 16
|
bitr2i |
⊢ ( 𝜓 ↔ 𝑦 ∈ { 𝑥 ∣ 𝜑 } ) |
18 |
|
eleq1w |
⊢ ( 𝑦 = 𝑤 → ( 𝑦 ∈ { 𝑥 ∣ 𝜑 } ↔ 𝑤 ∈ { 𝑥 ∣ 𝜑 } ) ) |
19 |
17 18
|
syl5bb |
⊢ ( 𝑦 = 𝑤 → ( 𝜓 ↔ 𝑤 ∈ { 𝑥 ∣ 𝜑 } ) ) |
20 |
19
|
adantl |
⊢ ( ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) → ( 𝜓 ↔ 𝑤 ∈ { 𝑥 ∣ 𝜑 } ) ) |
21 |
|
simpl |
⊢ ( ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) → 𝑥 = 𝑧 ) |
22 |
21
|
fveq2d |
⊢ ( ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) → ( rank ‘ 𝑥 ) = ( rank ‘ 𝑧 ) ) |
23 |
|
simpr |
⊢ ( ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) → 𝑦 = 𝑤 ) |
24 |
23
|
fveq2d |
⊢ ( ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) → ( rank ‘ 𝑦 ) = ( rank ‘ 𝑤 ) ) |
25 |
22 24
|
sseq12d |
⊢ ( ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) → ( ( rank ‘ 𝑥 ) ⊆ ( rank ‘ 𝑦 ) ↔ ( rank ‘ 𝑧 ) ⊆ ( rank ‘ 𝑤 ) ) ) |
26 |
20 25
|
imbi12d |
⊢ ( ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) → ( ( 𝜓 → ( rank ‘ 𝑥 ) ⊆ ( rank ‘ 𝑦 ) ) ↔ ( 𝑤 ∈ { 𝑥 ∣ 𝜑 } → ( rank ‘ 𝑧 ) ⊆ ( rank ‘ 𝑤 ) ) ) ) |
27 |
26
|
cbvaldvaw |
⊢ ( 𝑥 = 𝑧 → ( ∀ 𝑦 ( 𝜓 → ( rank ‘ 𝑥 ) ⊆ ( rank ‘ 𝑦 ) ) ↔ ∀ 𝑤 ( 𝑤 ∈ { 𝑥 ∣ 𝜑 } → ( rank ‘ 𝑧 ) ⊆ ( rank ‘ 𝑤 ) ) ) ) |
28 |
|
df-ral |
⊢ ( ∀ 𝑤 ∈ { 𝑥 ∣ 𝜑 } ( rank ‘ 𝑧 ) ⊆ ( rank ‘ 𝑤 ) ↔ ∀ 𝑤 ( 𝑤 ∈ { 𝑥 ∣ 𝜑 } → ( rank ‘ 𝑧 ) ⊆ ( rank ‘ 𝑤 ) ) ) |
29 |
27 28
|
bitr4di |
⊢ ( 𝑥 = 𝑧 → ( ∀ 𝑦 ( 𝜓 → ( rank ‘ 𝑥 ) ⊆ ( rank ‘ 𝑦 ) ) ↔ ∀ 𝑤 ∈ { 𝑥 ∣ 𝜑 } ( rank ‘ 𝑧 ) ⊆ ( rank ‘ 𝑤 ) ) ) |
30 |
14 29
|
anbi12d |
⊢ ( 𝑥 = 𝑧 → ( ( 𝜑 ∧ ∀ 𝑦 ( 𝜓 → ( rank ‘ 𝑥 ) ⊆ ( rank ‘ 𝑦 ) ) ) ↔ ( 𝑧 ∈ { 𝑥 ∣ 𝜑 } ∧ ∀ 𝑤 ∈ { 𝑥 ∣ 𝜑 } ( rank ‘ 𝑧 ) ⊆ ( rank ‘ 𝑤 ) ) ) ) |
31 |
10 11 30
|
elabf |
⊢ ( 𝑧 ∈ { 𝑥 ∣ ( 𝜑 ∧ ∀ 𝑦 ( 𝜓 → ( rank ‘ 𝑥 ) ⊆ ( rank ‘ 𝑦 ) ) ) } ↔ ( 𝑧 ∈ { 𝑥 ∣ 𝜑 } ∧ ∀ 𝑤 ∈ { 𝑥 ∣ 𝜑 } ( rank ‘ 𝑧 ) ⊆ ( rank ‘ 𝑤 ) ) ) |
32 |
31
|
bicomi |
⊢ ( ( 𝑧 ∈ { 𝑥 ∣ 𝜑 } ∧ ∀ 𝑤 ∈ { 𝑥 ∣ 𝜑 } ( rank ‘ 𝑧 ) ⊆ ( rank ‘ 𝑤 ) ) ↔ 𝑧 ∈ { 𝑥 ∣ ( 𝜑 ∧ ∀ 𝑦 ( 𝜓 → ( rank ‘ 𝑥 ) ⊆ ( rank ‘ 𝑦 ) ) ) } ) |
33 |
5 32
|
mpgbir |
⊢ { 𝑧 ∣ ( 𝑧 ∈ { 𝑥 ∣ 𝜑 } ∧ ∀ 𝑤 ∈ { 𝑥 ∣ 𝜑 } ( rank ‘ 𝑧 ) ⊆ ( rank ‘ 𝑤 ) ) } = { 𝑥 ∣ ( 𝜑 ∧ ∀ 𝑦 ( 𝜓 → ( rank ‘ 𝑥 ) ⊆ ( rank ‘ 𝑦 ) ) ) } |
34 |
3 4 33
|
3eqtri |
⊢ Scott { 𝑥 ∣ 𝜑 } = { 𝑥 ∣ ( 𝜑 ∧ ∀ 𝑦 ( 𝜓 → ( rank ‘ 𝑥 ) ⊆ ( rank ‘ 𝑦 ) ) ) } |