Step |
Hyp |
Ref |
Expression |
1 |
|
scottabf.1 |
|- F/ x ps |
2 |
|
scottabf.2 |
|- ( x = y -> ( ph <-> ps ) ) |
3 |
|
df-scott |
|- Scott { x | ph } = { z e. { x | ph } | A. w e. { x | ph } ( rank ` z ) C_ ( rank ` w ) } |
4 |
|
df-rab |
|- { z e. { x | ph } | A. w e. { x | ph } ( rank ` z ) C_ ( rank ` w ) } = { z | ( z e. { x | ph } /\ A. w e. { x | ph } ( rank ` z ) C_ ( rank ` w ) ) } |
5 |
|
abeq1 |
|- ( { z | ( z e. { x | ph } /\ A. w e. { x | ph } ( rank ` z ) C_ ( rank ` w ) ) } = { x | ( ph /\ A. y ( ps -> ( rank ` x ) C_ ( rank ` y ) ) ) } <-> A. z ( ( z e. { x | ph } /\ A. w e. { x | ph } ( rank ` z ) C_ ( rank ` w ) ) <-> z e. { x | ( ph /\ A. y ( ps -> ( rank ` x ) C_ ( rank ` y ) ) ) } ) ) |
6 |
|
nfsab1 |
|- F/ x z e. { x | ph } |
7 |
|
nfab1 |
|- F/_ x { x | ph } |
8 |
|
nfv |
|- F/ x ( rank ` z ) C_ ( rank ` w ) |
9 |
7 8
|
nfralw |
|- F/ x A. w e. { x | ph } ( rank ` z ) C_ ( rank ` w ) |
10 |
6 9
|
nfan |
|- F/ x ( z e. { x | ph } /\ A. w e. { x | ph } ( rank ` z ) C_ ( rank ` w ) ) |
11 |
|
vex |
|- z e. _V |
12 |
|
abid |
|- ( x e. { x | ph } <-> ph ) |
13 |
|
eleq1w |
|- ( x = z -> ( x e. { x | ph } <-> z e. { x | ph } ) ) |
14 |
12 13
|
bitr3id |
|- ( x = z -> ( ph <-> z e. { x | ph } ) ) |
15 |
|
df-clab |
|- ( y e. { x | ph } <-> [ y / x ] ph ) |
16 |
1 2
|
sbiev |
|- ( [ y / x ] ph <-> ps ) |
17 |
15 16
|
bitr2i |
|- ( ps <-> y e. { x | ph } ) |
18 |
|
eleq1w |
|- ( y = w -> ( y e. { x | ph } <-> w e. { x | ph } ) ) |
19 |
17 18
|
syl5bb |
|- ( y = w -> ( ps <-> w e. { x | ph } ) ) |
20 |
19
|
adantl |
|- ( ( x = z /\ y = w ) -> ( ps <-> w e. { x | ph } ) ) |
21 |
|
simpl |
|- ( ( x = z /\ y = w ) -> x = z ) |
22 |
21
|
fveq2d |
|- ( ( x = z /\ y = w ) -> ( rank ` x ) = ( rank ` z ) ) |
23 |
|
simpr |
|- ( ( x = z /\ y = w ) -> y = w ) |
24 |
23
|
fveq2d |
|- ( ( x = z /\ y = w ) -> ( rank ` y ) = ( rank ` w ) ) |
25 |
22 24
|
sseq12d |
|- ( ( x = z /\ y = w ) -> ( ( rank ` x ) C_ ( rank ` y ) <-> ( rank ` z ) C_ ( rank ` w ) ) ) |
26 |
20 25
|
imbi12d |
|- ( ( x = z /\ y = w ) -> ( ( ps -> ( rank ` x ) C_ ( rank ` y ) ) <-> ( w e. { x | ph } -> ( rank ` z ) C_ ( rank ` w ) ) ) ) |
27 |
26
|
cbvaldvaw |
|- ( x = z -> ( A. y ( ps -> ( rank ` x ) C_ ( rank ` y ) ) <-> A. w ( w e. { x | ph } -> ( rank ` z ) C_ ( rank ` w ) ) ) ) |
28 |
|
df-ral |
|- ( A. w e. { x | ph } ( rank ` z ) C_ ( rank ` w ) <-> A. w ( w e. { x | ph } -> ( rank ` z ) C_ ( rank ` w ) ) ) |
29 |
27 28
|
bitr4di |
|- ( x = z -> ( A. y ( ps -> ( rank ` x ) C_ ( rank ` y ) ) <-> A. w e. { x | ph } ( rank ` z ) C_ ( rank ` w ) ) ) |
30 |
14 29
|
anbi12d |
|- ( x = z -> ( ( ph /\ A. y ( ps -> ( rank ` x ) C_ ( rank ` y ) ) ) <-> ( z e. { x | ph } /\ A. w e. { x | ph } ( rank ` z ) C_ ( rank ` w ) ) ) ) |
31 |
10 11 30
|
elabf |
|- ( z e. { x | ( ph /\ A. y ( ps -> ( rank ` x ) C_ ( rank ` y ) ) ) } <-> ( z e. { x | ph } /\ A. w e. { x | ph } ( rank ` z ) C_ ( rank ` w ) ) ) |
32 |
31
|
bicomi |
|- ( ( z e. { x | ph } /\ A. w e. { x | ph } ( rank ` z ) C_ ( rank ` w ) ) <-> z e. { x | ( ph /\ A. y ( ps -> ( rank ` x ) C_ ( rank ` y ) ) ) } ) |
33 |
5 32
|
mpgbir |
|- { z | ( z e. { x | ph } /\ A. w e. { x | ph } ( rank ` z ) C_ ( rank ` w ) ) } = { x | ( ph /\ A. y ( ps -> ( rank ` x ) C_ ( rank ` y ) ) ) } |
34 |
3 4 33
|
3eqtri |
|- Scott { x | ph } = { x | ( ph /\ A. y ( ps -> ( rank ` x ) C_ ( rank ` y ) ) ) } |