Metamath Proof Explorer
Description: Value of the Scott operation at a class abstraction. (Contributed by Rohan Ridenour, 14-Aug-2023)
|
|
Ref |
Expression |
|
Hypothesis |
scottab.1 |
⊢ ( 𝑥 = 𝑦 → ( 𝜑 ↔ 𝜓 ) ) |
|
Assertion |
scottab |
⊢ Scott { 𝑥 ∣ 𝜑 } = { 𝑥 ∣ ( 𝜑 ∧ ∀ 𝑦 ( 𝜓 → ( rank ‘ 𝑥 ) ⊆ ( rank ‘ 𝑦 ) ) ) } |
Proof
| Step |
Hyp |
Ref |
Expression |
| 1 |
|
scottab.1 |
⊢ ( 𝑥 = 𝑦 → ( 𝜑 ↔ 𝜓 ) ) |
| 2 |
|
nfv |
⊢ Ⅎ 𝑥 𝜓 |
| 3 |
2 1
|
scottabf |
⊢ Scott { 𝑥 ∣ 𝜑 } = { 𝑥 ∣ ( 𝜑 ∧ ∀ 𝑦 ( 𝜓 → ( rank ‘ 𝑥 ) ⊆ ( rank ‘ 𝑦 ) ) ) } |