| Step |
Hyp |
Ref |
Expression |
| 1 |
|
sectpropd.1 |
|- ( ph -> ( Homf ` C ) = ( Homf ` D ) ) |
| 2 |
|
sectpropd.2 |
|- ( ph -> ( comf ` C ) = ( comf ` D ) ) |
| 3 |
1 2
|
sectpropdlem |
|- ( ( ph /\ f e. ( Sect ` C ) ) -> f e. ( Sect ` D ) ) |
| 4 |
1
|
eqcomd |
|- ( ph -> ( Homf ` D ) = ( Homf ` C ) ) |
| 5 |
2
|
eqcomd |
|- ( ph -> ( comf ` D ) = ( comf ` C ) ) |
| 6 |
4 5
|
sectpropdlem |
|- ( ( ph /\ f e. ( Sect ` D ) ) -> f e. ( Sect ` C ) ) |
| 7 |
3 6
|
impbida |
|- ( ph -> ( f e. ( Sect ` C ) <-> f e. ( Sect ` D ) ) ) |
| 8 |
7
|
eqrdv |
|- ( ph -> ( Sect ` C ) = ( Sect ` D ) ) |