Description: The third argument passed to evalSub is in the domain. (Contributed by SN, 15-Dec-2023)
Ref | Expression | ||
---|---|---|---|
Hypotheses | selvcllem2.u | |- U = ( I mPoly R ) |
|
selvcllem2.t | |- T = ( J mPoly U ) |
||
selvcllem2.c | |- C = ( algSc ` T ) |
||
selvcllem2.d | |- D = ( C o. ( algSc ` U ) ) |
||
selvcllem2.i | |- ( ph -> I e. V ) |
||
selvcllem2.j | |- ( ph -> J e. W ) |
||
selvcllem2.r | |- ( ph -> R e. CRing ) |
||
Assertion | selvcllem3 | |- ( ph -> ran D e. ( SubRing ` T ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | selvcllem2.u | |- U = ( I mPoly R ) |
|
2 | selvcllem2.t | |- T = ( J mPoly U ) |
|
3 | selvcllem2.c | |- C = ( algSc ` T ) |
|
4 | selvcllem2.d | |- D = ( C o. ( algSc ` U ) ) |
|
5 | selvcllem2.i | |- ( ph -> I e. V ) |
|
6 | selvcllem2.j | |- ( ph -> J e. W ) |
|
7 | selvcllem2.r | |- ( ph -> R e. CRing ) |
|
8 | 1 2 3 4 5 6 7 | selvcllem2 | |- ( ph -> D e. ( R RingHom T ) ) |
9 | rnrhmsubrg | |- ( D e. ( R RingHom T ) -> ran D e. ( SubRing ` T ) ) |
|
10 | 8 9 | syl | |- ( ph -> ran D e. ( SubRing ` T ) ) |