Metamath Proof Explorer


Theorem selvcllem3

Description: The third argument passed to evalSub is in the domain. (Contributed by SN, 15-Dec-2023)

Ref Expression
Hypotheses selvcllem2.u 𝑈 = ( 𝐼 mPoly 𝑅 )
selvcllem2.t 𝑇 = ( 𝐽 mPoly 𝑈 )
selvcllem2.c 𝐶 = ( algSc ‘ 𝑇 )
selvcllem2.d 𝐷 = ( 𝐶 ∘ ( algSc ‘ 𝑈 ) )
selvcllem2.i ( 𝜑𝐼𝑉 )
selvcllem2.j ( 𝜑𝐽𝑊 )
selvcllem2.r ( 𝜑𝑅 ∈ CRing )
Assertion selvcllem3 ( 𝜑 → ran 𝐷 ∈ ( SubRing ‘ 𝑇 ) )

Proof

Step Hyp Ref Expression
1 selvcllem2.u 𝑈 = ( 𝐼 mPoly 𝑅 )
2 selvcllem2.t 𝑇 = ( 𝐽 mPoly 𝑈 )
3 selvcllem2.c 𝐶 = ( algSc ‘ 𝑇 )
4 selvcllem2.d 𝐷 = ( 𝐶 ∘ ( algSc ‘ 𝑈 ) )
5 selvcllem2.i ( 𝜑𝐼𝑉 )
6 selvcllem2.j ( 𝜑𝐽𝑊 )
7 selvcllem2.r ( 𝜑𝑅 ∈ CRing )
8 1 2 3 4 5 6 7 selvcllem2 ( 𝜑𝐷 ∈ ( 𝑅 RingHom 𝑇 ) )
9 rnrhmsubrg ( 𝐷 ∈ ( 𝑅 RingHom 𝑇 ) → ran 𝐷 ∈ ( SubRing ‘ 𝑇 ) )
10 8 9 syl ( 𝜑 → ran 𝐷 ∈ ( SubRing ‘ 𝑇 ) )