| Step |
Hyp |
Ref |
Expression |
| 1 |
|
selvcllem2.u |
⊢ 𝑈 = ( 𝐼 mPoly 𝑅 ) |
| 2 |
|
selvcllem2.t |
⊢ 𝑇 = ( 𝐽 mPoly 𝑈 ) |
| 3 |
|
selvcllem2.c |
⊢ 𝐶 = ( algSc ‘ 𝑇 ) |
| 4 |
|
selvcllem2.d |
⊢ 𝐷 = ( 𝐶 ∘ ( algSc ‘ 𝑈 ) ) |
| 5 |
|
selvcllem2.i |
⊢ ( 𝜑 → 𝐼 ∈ 𝑉 ) |
| 6 |
|
selvcllem2.j |
⊢ ( 𝜑 → 𝐽 ∈ 𝑊 ) |
| 7 |
|
selvcllem2.r |
⊢ ( 𝜑 → 𝑅 ∈ CRing ) |
| 8 |
1 2 5 6 7
|
selvcllem1 |
⊢ ( 𝜑 → 𝑇 ∈ AssAlg ) |
| 9 |
|
eqid |
⊢ ( Scalar ‘ 𝑇 ) = ( Scalar ‘ 𝑇 ) |
| 10 |
3 9
|
asclrhm |
⊢ ( 𝑇 ∈ AssAlg → 𝐶 ∈ ( ( Scalar ‘ 𝑇 ) RingHom 𝑇 ) ) |
| 11 |
8 10
|
syl |
⊢ ( 𝜑 → 𝐶 ∈ ( ( Scalar ‘ 𝑇 ) RingHom 𝑇 ) ) |
| 12 |
1
|
mplassa |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑅 ∈ CRing ) → 𝑈 ∈ AssAlg ) |
| 13 |
5 7 12
|
syl2anc |
⊢ ( 𝜑 → 𝑈 ∈ AssAlg ) |
| 14 |
2 6 13
|
mplsca |
⊢ ( 𝜑 → 𝑈 = ( Scalar ‘ 𝑇 ) ) |
| 15 |
14
|
oveq1d |
⊢ ( 𝜑 → ( 𝑈 RingHom 𝑇 ) = ( ( Scalar ‘ 𝑇 ) RingHom 𝑇 ) ) |
| 16 |
11 15
|
eleqtrrd |
⊢ ( 𝜑 → 𝐶 ∈ ( 𝑈 RingHom 𝑇 ) ) |
| 17 |
|
eqid |
⊢ ( algSc ‘ 𝑈 ) = ( algSc ‘ 𝑈 ) |
| 18 |
|
eqid |
⊢ ( Scalar ‘ 𝑈 ) = ( Scalar ‘ 𝑈 ) |
| 19 |
17 18
|
asclrhm |
⊢ ( 𝑈 ∈ AssAlg → ( algSc ‘ 𝑈 ) ∈ ( ( Scalar ‘ 𝑈 ) RingHom 𝑈 ) ) |
| 20 |
13 19
|
syl |
⊢ ( 𝜑 → ( algSc ‘ 𝑈 ) ∈ ( ( Scalar ‘ 𝑈 ) RingHom 𝑈 ) ) |
| 21 |
|
rhmco |
⊢ ( ( 𝐶 ∈ ( 𝑈 RingHom 𝑇 ) ∧ ( algSc ‘ 𝑈 ) ∈ ( ( Scalar ‘ 𝑈 ) RingHom 𝑈 ) ) → ( 𝐶 ∘ ( algSc ‘ 𝑈 ) ) ∈ ( ( Scalar ‘ 𝑈 ) RingHom 𝑇 ) ) |
| 22 |
16 20 21
|
syl2anc |
⊢ ( 𝜑 → ( 𝐶 ∘ ( algSc ‘ 𝑈 ) ) ∈ ( ( Scalar ‘ 𝑈 ) RingHom 𝑇 ) ) |
| 23 |
1 5 7
|
mplsca |
⊢ ( 𝜑 → 𝑅 = ( Scalar ‘ 𝑈 ) ) |
| 24 |
23
|
oveq1d |
⊢ ( 𝜑 → ( 𝑅 RingHom 𝑇 ) = ( ( Scalar ‘ 𝑈 ) RingHom 𝑇 ) ) |
| 25 |
22 24
|
eleqtrrd |
⊢ ( 𝜑 → ( 𝐶 ∘ ( algSc ‘ 𝑈 ) ) ∈ ( 𝑅 RingHom 𝑇 ) ) |
| 26 |
4 25
|
eqeltrid |
⊢ ( 𝜑 → 𝐷 ∈ ( 𝑅 RingHom 𝑇 ) ) |