| Step |
Hyp |
Ref |
Expression |
| 1 |
|
selvcllemh.u |
⊢ 𝑈 = ( ( 𝐼 ∖ 𝐽 ) mPoly 𝑅 ) |
| 2 |
|
selvcllemh.t |
⊢ 𝑇 = ( 𝐽 mPoly 𝑈 ) |
| 3 |
|
selvcllemh.c |
⊢ 𝐶 = ( algSc ‘ 𝑇 ) |
| 4 |
|
selvcllemh.d |
⊢ 𝐷 = ( 𝐶 ∘ ( algSc ‘ 𝑈 ) ) |
| 5 |
|
selvcllemh.q |
⊢ 𝑄 = ( ( 𝐼 evalSub 𝑇 ) ‘ ran 𝐷 ) |
| 6 |
|
selvcllemh.w |
⊢ 𝑊 = ( 𝐼 mPoly 𝑆 ) |
| 7 |
|
selvcllemh.s |
⊢ 𝑆 = ( 𝑇 ↾s ran 𝐷 ) |
| 8 |
|
selvcllemh.x |
⊢ 𝑋 = ( 𝑇 ↑s ( 𝐵 ↑m 𝐼 ) ) |
| 9 |
|
selvcllemh.b |
⊢ 𝐵 = ( Base ‘ 𝑇 ) |
| 10 |
|
selvcllemh.i |
⊢ ( 𝜑 → 𝐼 ∈ 𝑉 ) |
| 11 |
|
selvcllemh.r |
⊢ ( 𝜑 → 𝑅 ∈ CRing ) |
| 12 |
|
selvcllemh.j |
⊢ ( 𝜑 → 𝐽 ⊆ 𝐼 ) |
| 13 |
10 12
|
ssexd |
⊢ ( 𝜑 → 𝐽 ∈ V ) |
| 14 |
10
|
difexd |
⊢ ( 𝜑 → ( 𝐼 ∖ 𝐽 ) ∈ V ) |
| 15 |
1
|
mplcrng |
⊢ ( ( ( 𝐼 ∖ 𝐽 ) ∈ V ∧ 𝑅 ∈ CRing ) → 𝑈 ∈ CRing ) |
| 16 |
14 11 15
|
syl2anc |
⊢ ( 𝜑 → 𝑈 ∈ CRing ) |
| 17 |
2
|
mplcrng |
⊢ ( ( 𝐽 ∈ V ∧ 𝑈 ∈ CRing ) → 𝑇 ∈ CRing ) |
| 18 |
13 16 17
|
syl2anc |
⊢ ( 𝜑 → 𝑇 ∈ CRing ) |
| 19 |
1 2 3 4 14 13 11
|
selvcllem3 |
⊢ ( 𝜑 → ran 𝐷 ∈ ( SubRing ‘ 𝑇 ) ) |
| 20 |
5 6 7 8 9
|
evlsrhm |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑇 ∈ CRing ∧ ran 𝐷 ∈ ( SubRing ‘ 𝑇 ) ) → 𝑄 ∈ ( 𝑊 RingHom 𝑋 ) ) |
| 21 |
10 18 19 20
|
syl3anc |
⊢ ( 𝜑 → 𝑄 ∈ ( 𝑊 RingHom 𝑋 ) ) |