Metamath Proof Explorer


Theorem selvcllemh

Description: Apply the third argument ( selvcllem3 ) to show that Q is a (ring) homomorphism. (Contributed by SN, 5-Nov-2023)

Ref Expression
Hypotheses selvcllemh.u 𝑈 = ( ( 𝐼𝐽 ) mPoly 𝑅 )
selvcllemh.t 𝑇 = ( 𝐽 mPoly 𝑈 )
selvcllemh.c 𝐶 = ( algSc ‘ 𝑇 )
selvcllemh.d 𝐷 = ( 𝐶 ∘ ( algSc ‘ 𝑈 ) )
selvcllemh.q 𝑄 = ( ( 𝐼 evalSub 𝑇 ) ‘ ran 𝐷 )
selvcllemh.w 𝑊 = ( 𝐼 mPoly 𝑆 )
selvcllemh.s 𝑆 = ( 𝑇s ran 𝐷 )
selvcllemh.x 𝑋 = ( 𝑇s ( 𝐵m 𝐼 ) )
selvcllemh.b 𝐵 = ( Base ‘ 𝑇 )
selvcllemh.i ( 𝜑𝐼𝑉 )
selvcllemh.r ( 𝜑𝑅 ∈ CRing )
selvcllemh.j ( 𝜑𝐽𝐼 )
Assertion selvcllemh ( 𝜑𝑄 ∈ ( 𝑊 RingHom 𝑋 ) )

Proof

Step Hyp Ref Expression
1 selvcllemh.u 𝑈 = ( ( 𝐼𝐽 ) mPoly 𝑅 )
2 selvcllemh.t 𝑇 = ( 𝐽 mPoly 𝑈 )
3 selvcllemh.c 𝐶 = ( algSc ‘ 𝑇 )
4 selvcllemh.d 𝐷 = ( 𝐶 ∘ ( algSc ‘ 𝑈 ) )
5 selvcllemh.q 𝑄 = ( ( 𝐼 evalSub 𝑇 ) ‘ ran 𝐷 )
6 selvcllemh.w 𝑊 = ( 𝐼 mPoly 𝑆 )
7 selvcllemh.s 𝑆 = ( 𝑇s ran 𝐷 )
8 selvcllemh.x 𝑋 = ( 𝑇s ( 𝐵m 𝐼 ) )
9 selvcllemh.b 𝐵 = ( Base ‘ 𝑇 )
10 selvcllemh.i ( 𝜑𝐼𝑉 )
11 selvcllemh.r ( 𝜑𝑅 ∈ CRing )
12 selvcllemh.j ( 𝜑𝐽𝐼 )
13 10 12 ssexd ( 𝜑𝐽 ∈ V )
14 10 difexd ( 𝜑 → ( 𝐼𝐽 ) ∈ V )
15 1 mplcrng ( ( ( 𝐼𝐽 ) ∈ V ∧ 𝑅 ∈ CRing ) → 𝑈 ∈ CRing )
16 14 11 15 syl2anc ( 𝜑𝑈 ∈ CRing )
17 2 mplcrng ( ( 𝐽 ∈ V ∧ 𝑈 ∈ CRing ) → 𝑇 ∈ CRing )
18 13 16 17 syl2anc ( 𝜑𝑇 ∈ CRing )
19 1 2 3 4 14 13 11 selvcllem3 ( 𝜑 → ran 𝐷 ∈ ( SubRing ‘ 𝑇 ) )
20 5 6 7 8 9 evlsrhm ( ( 𝐼𝑉𝑇 ∈ CRing ∧ ran 𝐷 ∈ ( SubRing ‘ 𝑇 ) ) → 𝑄 ∈ ( 𝑊 RingHom 𝑋 ) )
21 10 18 19 20 syl3anc ( 𝜑𝑄 ∈ ( 𝑊 RingHom 𝑋 ) )